Author: Florence Tupin
Publisher: John Wiley & Sons
ISBN: 9781848215085
Category : Technology & Engineering
Languages : en
Pages : 0
Book Description
Dedicated to remote sensing images, from their acquisition to their use in various applications, this book covers the global lifecycle of images, including sensors and acquisition systems, applications such as movement monitoring or data assimilation, and image and data processing. It is organized in three main parts. The first part presents technological information about remote sensing (choice of satellite orbit and sensors) and elements of physics related to sensing (optics and microwave propagation). The second part presents image processing algorithms and their specificities for radar or optical, multi and hyper-spectral images. The final part is devoted to applications: change detection and analysis of time series, elevation measurement, displacement measurement and data assimilation. Offering a comprehensive survey of the domain of remote sensing imagery with a multi-disciplinary approach, this book is suitable for graduate students and engineers, with backgrounds either in computer science and applied math (signal and image processing) or geo-physics. About the Authors Florence Tupin is Professor at Telecom ParisTech, France. Her research interests include remote sensing imagery, image analysis and interpretation, three-dimensional reconstruction, and synthetic aperture radar, especially for urban remote sensing applications. Jordi Inglada works at the Centre National d’Études Spatiales (French Space Agency), Toulouse, France, in the field of remote sensing image processing at the CESBIO laboratory. He is in charge of the development of image processing algorithms for the operational exploitation of Earth observation images, mainly in the field of multi-temporal image analysis for land use and cover change. Jean-Marie Nicolas is Professor at Telecom ParisTech in the Signal and Imaging department. His research interests include the modeling and processing of synthetic aperture radar images.
Remote Sensing Imagery
Author: Florence Tupin
Publisher: John Wiley & Sons
ISBN: 9781848215085
Category : Technology & Engineering
Languages : en
Pages : 0
Book Description
Dedicated to remote sensing images, from their acquisition to their use in various applications, this book covers the global lifecycle of images, including sensors and acquisition systems, applications such as movement monitoring or data assimilation, and image and data processing. It is organized in three main parts. The first part presents technological information about remote sensing (choice of satellite orbit and sensors) and elements of physics related to sensing (optics and microwave propagation). The second part presents image processing algorithms and their specificities for radar or optical, multi and hyper-spectral images. The final part is devoted to applications: change detection and analysis of time series, elevation measurement, displacement measurement and data assimilation. Offering a comprehensive survey of the domain of remote sensing imagery with a multi-disciplinary approach, this book is suitable for graduate students and engineers, with backgrounds either in computer science and applied math (signal and image processing) or geo-physics. About the Authors Florence Tupin is Professor at Telecom ParisTech, France. Her research interests include remote sensing imagery, image analysis and interpretation, three-dimensional reconstruction, and synthetic aperture radar, especially for urban remote sensing applications. Jordi Inglada works at the Centre National d’Études Spatiales (French Space Agency), Toulouse, France, in the field of remote sensing image processing at the CESBIO laboratory. He is in charge of the development of image processing algorithms for the operational exploitation of Earth observation images, mainly in the field of multi-temporal image analysis for land use and cover change. Jean-Marie Nicolas is Professor at Telecom ParisTech in the Signal and Imaging department. His research interests include the modeling and processing of synthetic aperture radar images.
Publisher: John Wiley & Sons
ISBN: 9781848215085
Category : Technology & Engineering
Languages : en
Pages : 0
Book Description
Dedicated to remote sensing images, from their acquisition to their use in various applications, this book covers the global lifecycle of images, including sensors and acquisition systems, applications such as movement monitoring or data assimilation, and image and data processing. It is organized in three main parts. The first part presents technological information about remote sensing (choice of satellite orbit and sensors) and elements of physics related to sensing (optics and microwave propagation). The second part presents image processing algorithms and their specificities for radar or optical, multi and hyper-spectral images. The final part is devoted to applications: change detection and analysis of time series, elevation measurement, displacement measurement and data assimilation. Offering a comprehensive survey of the domain of remote sensing imagery with a multi-disciplinary approach, this book is suitable for graduate students and engineers, with backgrounds either in computer science and applied math (signal and image processing) or geo-physics. About the Authors Florence Tupin is Professor at Telecom ParisTech, France. Her research interests include remote sensing imagery, image analysis and interpretation, three-dimensional reconstruction, and synthetic aperture radar, especially for urban remote sensing applications. Jordi Inglada works at the Centre National d’Études Spatiales (French Space Agency), Toulouse, France, in the field of remote sensing image processing at the CESBIO laboratory. He is in charge of the development of image processing algorithms for the operational exploitation of Earth observation images, mainly in the field of multi-temporal image analysis for land use and cover change. Jean-Marie Nicolas is Professor at Telecom ParisTech in the Signal and Imaging department. His research interests include the modeling and processing of synthetic aperture radar images.
Remote Sensing Digital Image Analysis
Author: John A. Richards
Publisher: Springer Science & Business Media
ISBN: 3642880878
Category : Science
Languages : en
Pages : 372
Book Description
Possibly the greatest change confronting the practitioner and student of remote sensing in the period since the first edition of this text appeared in 1986 has been the enormous improvement in accessibility to image processing technology. Falling hardware and software costs, combined with an increase in functionality through the development of extremely versatile user interfaces, has meant that even the user unskilled in computing now has immediate and ready access to powerful and flexible means for digital image analysis and enhancement. An understanding, at algorithmic level, of the various methods for image processing has become therefore even more important in the past few years to ensure the full capability of digital image processing is utilised. This period has also been a busy one in relation to digital data supply. Several nations have become satellite data gatherers and providers, using both optical and microwave technology. Practitioners and researchers are now faced, therefore, with the need to be able to process imagery from several sensors, together with other forms of spatial data. This has been driven, to an extent, by developments in Geographic Information Systems (GIS) which, in tum, have led to the appearance of newer image processing procedures as adjuncts to more traditional approaches.
Publisher: Springer Science & Business Media
ISBN: 3642880878
Category : Science
Languages : en
Pages : 372
Book Description
Possibly the greatest change confronting the practitioner and student of remote sensing in the period since the first edition of this text appeared in 1986 has been the enormous improvement in accessibility to image processing technology. Falling hardware and software costs, combined with an increase in functionality through the development of extremely versatile user interfaces, has meant that even the user unskilled in computing now has immediate and ready access to powerful and flexible means for digital image analysis and enhancement. An understanding, at algorithmic level, of the various methods for image processing has become therefore even more important in the past few years to ensure the full capability of digital image processing is utilised. This period has also been a busy one in relation to digital data supply. Several nations have become satellite data gatherers and providers, using both optical and microwave technology. Practitioners and researchers are now faced, therefore, with the need to be able to process imagery from several sensors, together with other forms of spatial data. This has been driven, to an extent, by developments in Geographic Information Systems (GIS) which, in tum, have led to the appearance of newer image processing procedures as adjuncts to more traditional approaches.
Remote Sensing
Author: Robert A. Schowengerdt
Publisher: Elsevier
ISBN: 0080516106
Category : Technology & Engineering
Languages : en
Pages : 585
Book Description
This book is a completely updated, greatly expanded version of the previously successful volume by the author. The Second Edition includes new results and data, and discusses a unified framework and rationale for designing and evaluating image processing algorithms.Written from the viewpoint that image processing supports remote sensing science, this book describes physical models for remote sensing phenomenology and sensors and how they contribute to models for remote-sensing data. The text then presents image processing techniques and interprets them in terms of these models. Spectral, spatial, and geometric models are used to introduce advanced image processing techniques such as hyperspectral image analysis, fusion of multisensor images, and digital elevationmodel extraction from stereo imagery.The material is suited for graduate level engineering, physical and natural science courses, or practicing remote sensing scientists. Each chapter is enhanced by student exercises designed to stimulate an understanding of the material. Over 300 figuresare produced specifically for this book, and numerous tables provide a rich bibliography of the research literature.
Publisher: Elsevier
ISBN: 0080516106
Category : Technology & Engineering
Languages : en
Pages : 585
Book Description
This book is a completely updated, greatly expanded version of the previously successful volume by the author. The Second Edition includes new results and data, and discusses a unified framework and rationale for designing and evaluating image processing algorithms.Written from the viewpoint that image processing supports remote sensing science, this book describes physical models for remote sensing phenomenology and sensors and how they contribute to models for remote-sensing data. The text then presents image processing techniques and interprets them in terms of these models. Spectral, spatial, and geometric models are used to introduce advanced image processing techniques such as hyperspectral image analysis, fusion of multisensor images, and digital elevationmodel extraction from stereo imagery.The material is suited for graduate level engineering, physical and natural science courses, or practicing remote sensing scientists. Each chapter is enhanced by student exercises designed to stimulate an understanding of the material. Over 300 figuresare produced specifically for this book, and numerous tables provide a rich bibliography of the research literature.
Remote Sensing
Author: John R. Schott
Publisher: Oxford University Press
ISBN: 0199724393
Category : Technology & Engineering
Languages : en
Pages : 701
Book Description
Remote Sensing deals with the fundamental ideas underlying the rapidly growing field of remote sensing. John Schott explores energy-matter interaction, radiation propagation, data dissemination, and described the tools and procedures required to extract information from remotely sensed data using the image chain approach. Organizations and individuals often focus on one aspect of the remote sensing process before considering it as a whole, thus investigating unjustified effort, time, and expense to get minimal improvement. Unlike other books on the subject, Remote Sensing treats the process as a continuous flow. Schott examines the limitations obstructing the flow of information to the user, employing numerous applications of remote sensing to earth observation disciplines. For this second edition, in addition to a thorough update, there are major changes and additions, such as a much more complete treatment of spectroscopic imaging, which has matured dramatically in the last ten years, and a more rigorous treatment of image processing with an emphasis on spectral image processing algorithms. Remote Sensing is an ideal first text in remote sensing for advanced undergraduate and graduate students in the physical or engineering sciences, and will also serve as a valuable reference for practitioners.
Publisher: Oxford University Press
ISBN: 0199724393
Category : Technology & Engineering
Languages : en
Pages : 701
Book Description
Remote Sensing deals with the fundamental ideas underlying the rapidly growing field of remote sensing. John Schott explores energy-matter interaction, radiation propagation, data dissemination, and described the tools and procedures required to extract information from remotely sensed data using the image chain approach. Organizations and individuals often focus on one aspect of the remote sensing process before considering it as a whole, thus investigating unjustified effort, time, and expense to get minimal improvement. Unlike other books on the subject, Remote Sensing treats the process as a continuous flow. Schott examines the limitations obstructing the flow of information to the user, employing numerous applications of remote sensing to earth observation disciplines. For this second edition, in addition to a thorough update, there are major changes and additions, such as a much more complete treatment of spectroscopic imaging, which has matured dramatically in the last ten years, and a more rigorous treatment of image processing with an emphasis on spectral image processing algorithms. Remote Sensing is an ideal first text in remote sensing for advanced undergraduate and graduate students in the physical or engineering sciences, and will also serve as a valuable reference for practitioners.
Advanced Deep Learning Strategies for the Analysis of Remote Sensing Images
Author: Yakoub Bazi
Publisher: MDPI
ISBN: 3036509860
Category : Science
Languages : en
Pages : 438
Book Description
The rapid growth of the world population has resulted in an exponential expansion of both urban and agricultural areas. Identifying and managing such earthly changes in an automatic way poses a worth-addressing challenge, in which remote sensing technology can have a fundamental role to answer—at least partially—such demands. The recent advent of cutting-edge processing facilities has fostered the adoption of deep learning architectures owing to their generalization capabilities. In this respect, it seems evident that the pace of deep learning in the remote sensing domain remains somewhat lagging behind that of its computer vision counterpart. This is due to the scarce availability of ground truth information in comparison with other computer vision domains. In this book, we aim at advancing the state of the art in linking deep learning methodologies with remote sensing image processing by collecting 20 contributions from different worldwide scientists and laboratories. The book presents a wide range of methodological advancements in the deep learning field that come with different applications in the remote sensing landscape such as wildfire and postdisaster damage detection, urban forest mapping, vine disease and pavement marking detection, desert road mapping, road and building outline extraction, vehicle and vessel detection, water identification, and text-to-image matching.
Publisher: MDPI
ISBN: 3036509860
Category : Science
Languages : en
Pages : 438
Book Description
The rapid growth of the world population has resulted in an exponential expansion of both urban and agricultural areas. Identifying and managing such earthly changes in an automatic way poses a worth-addressing challenge, in which remote sensing technology can have a fundamental role to answer—at least partially—such demands. The recent advent of cutting-edge processing facilities has fostered the adoption of deep learning architectures owing to their generalization capabilities. In this respect, it seems evident that the pace of deep learning in the remote sensing domain remains somewhat lagging behind that of its computer vision counterpart. This is due to the scarce availability of ground truth information in comparison with other computer vision domains. In this book, we aim at advancing the state of the art in linking deep learning methodologies with remote sensing image processing by collecting 20 contributions from different worldwide scientists and laboratories. The book presents a wide range of methodological advancements in the deep learning field that come with different applications in the remote sensing landscape such as wildfire and postdisaster damage detection, urban forest mapping, vine disease and pavement marking detection, desert road mapping, road and building outline extraction, vehicle and vessel detection, water identification, and text-to-image matching.
Remote Sensing Time Series Image Processing
Author: Qihao Weng
Publisher: CRC Press
ISBN: 1351680560
Category : Science
Languages : en
Pages : 244
Book Description
Today, remote sensing technology is an essential tool for understanding the Earth and managing human-Earth interactions. There is a rapidly growing need for remote sensing and Earth observation technology that enables monitoring of world’s natural resources and environments, managing exposure to natural and man-made risks and more frequently occurring disasters, and helping the sustainability and productivity of natural and human ecosystems. The improvement in temporal resolution/revisit allows for the large accumulation of images for a specific location, creating a possibility for time series image analysis and eventual real-time assessments of scene dynamics. As an authoritative text, Remote Sensing Time Series Image Processing brings together active and recognized authors in the field of time series image analysis and presents to the readers the current state of knowledge and its future directions. Divided into three parts, the first addresses methods and techniques for generating time series image datasets. In particular, it provides guidance on the selection of cloud and cloud shadow detection algorithms for various applications. Part II examines feature development and information extraction methods for time series imagery. It presents some key remote sensing-based metrics, and their major applications in ecosystems and climate change studies. Part III illustrates various applications of time series image processing in land cover change, disturbance attribution, vegetation dynamics, and urbanization. This book is intended for researchers, practitioners, and students in both remote sensing and imaging science. It can be used as a textbook by undergraduate and graduate students majoring in remote sensing, imaging science, civil and electrical engineering, geography, geosciences, planning, environmental science, land use, energy, and GIS, and as a reference book by practitioners and professionals in the government, commercial, and industrial sectors.
Publisher: CRC Press
ISBN: 1351680560
Category : Science
Languages : en
Pages : 244
Book Description
Today, remote sensing technology is an essential tool for understanding the Earth and managing human-Earth interactions. There is a rapidly growing need for remote sensing and Earth observation technology that enables monitoring of world’s natural resources and environments, managing exposure to natural and man-made risks and more frequently occurring disasters, and helping the sustainability and productivity of natural and human ecosystems. The improvement in temporal resolution/revisit allows for the large accumulation of images for a specific location, creating a possibility for time series image analysis and eventual real-time assessments of scene dynamics. As an authoritative text, Remote Sensing Time Series Image Processing brings together active and recognized authors in the field of time series image analysis and presents to the readers the current state of knowledge and its future directions. Divided into three parts, the first addresses methods and techniques for generating time series image datasets. In particular, it provides guidance on the selection of cloud and cloud shadow detection algorithms for various applications. Part II examines feature development and information extraction methods for time series imagery. It presents some key remote sensing-based metrics, and their major applications in ecosystems and climate change studies. Part III illustrates various applications of time series image processing in land cover change, disturbance attribution, vegetation dynamics, and urbanization. This book is intended for researchers, practitioners, and students in both remote sensing and imaging science. It can be used as a textbook by undergraduate and graduate students majoring in remote sensing, imaging science, civil and electrical engineering, geography, geosciences, planning, environmental science, land use, energy, and GIS, and as a reference book by practitioners and professionals in the government, commercial, and industrial sectors.
Deep Learning for Remote Sensing Images with Open Source Software
Author: Rémi Cresson
Publisher: CRC Press
ISBN: 1000093611
Category : Technology & Engineering
Languages : en
Pages : 158
Book Description
In today’s world, deep learning source codes and a plethora of open access geospatial images are readily available and easily accessible. However, most people are missing the educational tools to make use of this resource. Deep Learning for Remote Sensing Images with Open Source Software is the first practical book to introduce deep learning techniques using free open source tools for processing real world remote sensing images. The approaches detailed in this book are generic and can be adapted to suit many different applications for remote sensing image processing, including landcover mapping, forestry, urban studies, disaster mapping, image restoration, etc. Written with practitioners and students in mind, this book helps link together the theory and practical use of existing tools and data to apply deep learning techniques on remote sensing images and data. Specific Features of this Book: The first book that explains how to apply deep learning techniques to public, free available data (Spot-7 and Sentinel-2 images, OpenStreetMap vector data), using open source software (QGIS, Orfeo ToolBox, TensorFlow) Presents approaches suited for real world images and data targeting large scale processing and GIS applications Introduces state of the art deep learning architecture families that can be applied to remote sensing world, mainly for landcover mapping, but also for generic approaches (e.g. image restoration) Suited for deep learning beginners and readers with some GIS knowledge. No coding knowledge is required to learn practical skills. Includes deep learning techniques through many step by step remote sensing data processing exercises.
Publisher: CRC Press
ISBN: 1000093611
Category : Technology & Engineering
Languages : en
Pages : 158
Book Description
In today’s world, deep learning source codes and a plethora of open access geospatial images are readily available and easily accessible. However, most people are missing the educational tools to make use of this resource. Deep Learning for Remote Sensing Images with Open Source Software is the first practical book to introduce deep learning techniques using free open source tools for processing real world remote sensing images. The approaches detailed in this book are generic and can be adapted to suit many different applications for remote sensing image processing, including landcover mapping, forestry, urban studies, disaster mapping, image restoration, etc. Written with practitioners and students in mind, this book helps link together the theory and practical use of existing tools and data to apply deep learning techniques on remote sensing images and data. Specific Features of this Book: The first book that explains how to apply deep learning techniques to public, free available data (Spot-7 and Sentinel-2 images, OpenStreetMap vector data), using open source software (QGIS, Orfeo ToolBox, TensorFlow) Presents approaches suited for real world images and data targeting large scale processing and GIS applications Introduces state of the art deep learning architecture families that can be applied to remote sensing world, mainly for landcover mapping, but also for generic approaches (e.g. image restoration) Suited for deep learning beginners and readers with some GIS knowledge. No coding knowledge is required to learn practical skills. Includes deep learning techniques through many step by step remote sensing data processing exercises.
Radar Remote Sensing of Urban Areas
Author: Uwe Soergel
Publisher: Springer Science & Business Media
ISBN: 9048137519
Category : Science
Languages : en
Pages : 287
Book Description
One of the key milestones of radar remote sensing for civil applications was the launch of the European Remote Sensing Satellite 1 (ERS 1) in 1991. The platform carried a variety of sensors; the Synthetic Aperture Radar (SAR) is widely cons- ered to be the most important. This active sensing technique provides all-day and all-weather mapping capability of considerably ?ne spatial resolution. ERS 1 and its sister system ERS 2 (launch 1995) were primarily designed for ocean app- cations, but soon the focus of attention turned to onshore mapping. Examples for typical applications are land cover classi?cation also in tropical zones and mo- toring of glaciers or urban growth. In parallel, international Space Shuttle Missions dedicated to radar remote sensing were conducted starting already in the 1980s. The most prominent were the SIR-C/X-SAR mission focussing on the investigation of multi-frequency and multi-polarization SAR data and the famous Shuttle Radar Topography Mission (SRTM). Data acquired during the latter enabled to derive a DEM of almost global coverage by means of SAR Interferometry. It is indispe- ableeventodayandformanyregionsthebestelevationmodelavailable. Differential SAR Interferometry based on time series of imagery of the ERS satellites and their successor Envisat became an important and unique technique for surface defor- tion monitoring. The spatial resolution of those devices is in the order of some tens of meters.
Publisher: Springer Science & Business Media
ISBN: 9048137519
Category : Science
Languages : en
Pages : 287
Book Description
One of the key milestones of radar remote sensing for civil applications was the launch of the European Remote Sensing Satellite 1 (ERS 1) in 1991. The platform carried a variety of sensors; the Synthetic Aperture Radar (SAR) is widely cons- ered to be the most important. This active sensing technique provides all-day and all-weather mapping capability of considerably ?ne spatial resolution. ERS 1 and its sister system ERS 2 (launch 1995) were primarily designed for ocean app- cations, but soon the focus of attention turned to onshore mapping. Examples for typical applications are land cover classi?cation also in tropical zones and mo- toring of glaciers or urban growth. In parallel, international Space Shuttle Missions dedicated to radar remote sensing were conducted starting already in the 1980s. The most prominent were the SIR-C/X-SAR mission focussing on the investigation of multi-frequency and multi-polarization SAR data and the famous Shuttle Radar Topography Mission (SRTM). Data acquired during the latter enabled to derive a DEM of almost global coverage by means of SAR Interferometry. It is indispe- ableeventodayandformanyregionsthebestelevationmodelavailable. Differential SAR Interferometry based on time series of imagery of the ERS satellites and their successor Envisat became an important and unique technique for surface defor- tion monitoring. The spatial resolution of those devices is in the order of some tens of meters.
Image Processing for Remote Sensing
Author: C.H. Chen
Publisher: CRC Press
ISBN: 142006665X
Category : Technology & Engineering
Languages : en
Pages : 417
Book Description
Edited by leaders in the field, with contributions by a panel of experts, Image Processing for Remote Sensing explores new and unconventional mathematics methods. The coverage includes the physics and mathematical algorithms of SAR images, a comprehensive treatment of MRF-based remote sensing image classification, statistical approaches for
Publisher: CRC Press
ISBN: 142006665X
Category : Technology & Engineering
Languages : en
Pages : 417
Book Description
Edited by leaders in the field, with contributions by a panel of experts, Image Processing for Remote Sensing explores new and unconventional mathematics methods. The coverage includes the physics and mathematical algorithms of SAR images, a comprehensive treatment of MRF-based remote sensing image classification, statistical approaches for
Image Processing and GIS for Remote Sensing
Author: Jian Guo Liu
Publisher: John Wiley & Sons
ISBN: 1118724208
Category : Technology & Engineering
Languages : en
Pages : 484
Book Description
Following the successful publication of the 1st edition in 2009, the 2nd edition maintains its aim to provide an application-driven package of essential techniques in image processing and GIS, together with case studies for demonstration and guidance in remote sensing applications. The book therefore has a “3 in 1” structure which pinpoints the intersection between these three individual disciplines and successfully draws them together in a balanced and comprehensive manner. The book conveys in-depth knowledge of image processing and GIS techniques in an accessible and comprehensive manner, with clear explanations and conceptual illustrations used throughout to enhance student learning. The understanding of key concepts is always emphasised with minimal assumption of prior mathematical experience. The book is heavily based on the authors’ own research. Many of the author-designed image processing techniques are popular around the world. For instance, the SFIM technique has long been adopted by ASTRIUM for mass-production of their standard “Pan-sharpen” imagery data. The new edition also includes a completely new chapter on subpixel technology and new case studies, based on their recent research.
Publisher: John Wiley & Sons
ISBN: 1118724208
Category : Technology & Engineering
Languages : en
Pages : 484
Book Description
Following the successful publication of the 1st edition in 2009, the 2nd edition maintains its aim to provide an application-driven package of essential techniques in image processing and GIS, together with case studies for demonstration and guidance in remote sensing applications. The book therefore has a “3 in 1” structure which pinpoints the intersection between these three individual disciplines and successfully draws them together in a balanced and comprehensive manner. The book conveys in-depth knowledge of image processing and GIS techniques in an accessible and comprehensive manner, with clear explanations and conceptual illustrations used throughout to enhance student learning. The understanding of key concepts is always emphasised with minimal assumption of prior mathematical experience. The book is heavily based on the authors’ own research. Many of the author-designed image processing techniques are popular around the world. For instance, the SFIM technique has long been adopted by ASTRIUM for mass-production of their standard “Pan-sharpen” imagery data. The new edition also includes a completely new chapter on subpixel technology and new case studies, based on their recent research.