Author: Edward G. Carmines
Publisher: SAGE Publications, Incorporated
ISBN:
Category : Political Science
Languages : en
Pages : 78
Book Description
This guide demonstrates how social scientists assess the reliability and validity of empirical measurements. This monograph is a good starting point for those who want to familiarize themselves with the current debates over "appropriate" measurement de
Reliability and Validity Assessment
Author: Edward G. Carmines
Publisher: SAGE Publications, Incorporated
ISBN:
Category : Political Science
Languages : en
Pages : 78
Book Description
This guide demonstrates how social scientists assess the reliability and validity of empirical measurements. This monograph is a good starting point for those who want to familiarize themselves with the current debates over "appropriate" measurement de
Publisher: SAGE Publications, Incorporated
ISBN:
Category : Political Science
Languages : en
Pages : 78
Book Description
This guide demonstrates how social scientists assess the reliability and validity of empirical measurements. This monograph is a good starting point for those who want to familiarize themselves with the current debates over "appropriate" measurement de
Reliability Assessment of Safety and Production Systems
Author: Jean-Pierre Signoret
Publisher: Springer Nature
ISBN: 3030647080
Category : Technology & Engineering
Languages : en
Pages : 887
Book Description
This book provides, as simply as possible, sound foundations for an in-depth understanding of reliability engineering with regard to qualitative analysis, modelling, and probabilistic calculations of safety and production systems. Drawing on the authors’ extensive experience within the field of reliability engineering, it addresses and discusses a variety of topics, including: • Background and overview of safety and dependability studies; • Explanation and critical analysis of definitions related to core concepts; • Risk identification through qualitative approaches (preliminary hazard analysis, HAZOP, FMECA, etc.); • Modelling of industrial systems through static (fault tree, reliability block diagram), sequential (cause-consequence diagrams, event trees, LOPA, bowtie), and dynamic (Markov graphs, Petri nets) approaches; • Probabilistic calculations through state-of-the-art analytical or Monte Carlo simulation techniques; • Analysis, modelling, and calculations of common cause failure and uncertainties; • Linkages and combinations between the various modelling and calculation approaches; • Reliability data collection and standardization. The book features illustrations, explanations, examples, and exercises to help readers gain a detailed understanding of the topic and implement it into their own work. Further, it analyses the production availability of production systems and the functional safety of safety systems (SIL calculations), showcasing specific applications of the general theory discussed. Given its scope, this book is a valuable resource for engineers, software designers, standard developers, professors, and students.
Publisher: Springer Nature
ISBN: 3030647080
Category : Technology & Engineering
Languages : en
Pages : 887
Book Description
This book provides, as simply as possible, sound foundations for an in-depth understanding of reliability engineering with regard to qualitative analysis, modelling, and probabilistic calculations of safety and production systems. Drawing on the authors’ extensive experience within the field of reliability engineering, it addresses and discusses a variety of topics, including: • Background and overview of safety and dependability studies; • Explanation and critical analysis of definitions related to core concepts; • Risk identification through qualitative approaches (preliminary hazard analysis, HAZOP, FMECA, etc.); • Modelling of industrial systems through static (fault tree, reliability block diagram), sequential (cause-consequence diagrams, event trees, LOPA, bowtie), and dynamic (Markov graphs, Petri nets) approaches; • Probabilistic calculations through state-of-the-art analytical or Monte Carlo simulation techniques; • Analysis, modelling, and calculations of common cause failure and uncertainties; • Linkages and combinations between the various modelling and calculation approaches; • Reliability data collection and standardization. The book features illustrations, explanations, examples, and exercises to help readers gain a detailed understanding of the topic and implement it into their own work. Further, it analyses the production availability of production systems and the functional safety of safety systems (SIL calculations), showcasing specific applications of the general theory discussed. Given its scope, this book is a valuable resource for engineers, software designers, standard developers, professors, and students.
Reliability and Validity of International Large-Scale Assessment
Author: Hans Wagemaker
Publisher: Springer Nature
ISBN: 3030530817
Category : Education
Languages : en
Pages : 279
Book Description
This open access book describes and reviews the development of the quality control mechanisms and methodologies associated with IEA’s extensive program of educational research. A group of renowned international researchers, directly involved in the design and execution of IEA’s international large-scale assessments (ILSAs), describe the operational and quality control procedures that are employed to address the challenges associated with providing high-quality, comparable data. Throughout the now considerable history of IEA’s international large-scale assessments, establishing the quality of the data has been paramount. Research in the complex multinational context in which IEA studies operate imposes significant burdens and challenges in terms of the methodologies and technologies that have been developed to achieve the stated study goals. The demands of the twin imperatives of validity and reliability must be satisfied in the context of multiple and diverse cultures, languages, orthographies, educational structures, educational histories, and traditions. Readers will learn about IEA’s approach to such challenges, and the methods used to ensure that the quality of the data provided to policymakers and researchers can be trusted. An often neglected area of investigation, namely the consequential validity of ILSAs, is also explored, examining issues related to reporting, dissemination, and impact, including discussion of the limits of interpretation. The final chapters address the question of the influence of ILSAs on policy and reform in education, including a case study from Singapore, a country known for its outstanding levels of achievement, but which nevertheless seeks the means of continual improvement, illustrating best practice use of ILSA data.
Publisher: Springer Nature
ISBN: 3030530817
Category : Education
Languages : en
Pages : 279
Book Description
This open access book describes and reviews the development of the quality control mechanisms and methodologies associated with IEA’s extensive program of educational research. A group of renowned international researchers, directly involved in the design and execution of IEA’s international large-scale assessments (ILSAs), describe the operational and quality control procedures that are employed to address the challenges associated with providing high-quality, comparable data. Throughout the now considerable history of IEA’s international large-scale assessments, establishing the quality of the data has been paramount. Research in the complex multinational context in which IEA studies operate imposes significant burdens and challenges in terms of the methodologies and technologies that have been developed to achieve the stated study goals. The demands of the twin imperatives of validity and reliability must be satisfied in the context of multiple and diverse cultures, languages, orthographies, educational structures, educational histories, and traditions. Readers will learn about IEA’s approach to such challenges, and the methods used to ensure that the quality of the data provided to policymakers and researchers can be trusted. An often neglected area of investigation, namely the consequential validity of ILSAs, is also explored, examining issues related to reporting, dissemination, and impact, including discussion of the limits of interpretation. The final chapters address the question of the influence of ILSAs on policy and reform in education, including a case study from Singapore, a country known for its outstanding levels of achievement, but which nevertheless seeks the means of continual improvement, illustrating best practice use of ILSA data.
Reliability Assessment of Large Electric Power Systems
Author: Roy Billinton
Publisher: Springer Science & Business Media
ISBN: 1461316898
Category : Technology & Engineering
Languages : en
Pages : 306
Book Description
We are very pleased to be asked to co-author this book for a variety of reasons, one of which was that it gave us further opportunity to work together. The scope proposed was very wide with the only significant proviso being that the book should be in a mongraph-style and not a teaching text. This require ment has given us the opportunity to compile a wide range of relevant material relating to present-day knowledge and application in power system reliability. As many readers will be aware, we have collaborated in many ways over a relatively long period and have co-authored two other books on reliability evaluation. Both of these previous books were structured as teaching texts. This present book is not a discourse on "how to do reliability evaluation" but a discussion on "why it should be done and what can be done and achieved" and as such does not replace or conflict with the previous books. The three books are complementary and each enhances the others. The material contained in this book is not specifically original since it is based on information which we have published in other forms either jointly or as co authors with various other people, particularly our many research students. We sincerely acknowledge the important contributions made by all these students and colleagues. There are too many to mention individually in this preface but their names appear frequently in the references at the end of each chapter.
Publisher: Springer Science & Business Media
ISBN: 1461316898
Category : Technology & Engineering
Languages : en
Pages : 306
Book Description
We are very pleased to be asked to co-author this book for a variety of reasons, one of which was that it gave us further opportunity to work together. The scope proposed was very wide with the only significant proviso being that the book should be in a mongraph-style and not a teaching text. This require ment has given us the opportunity to compile a wide range of relevant material relating to present-day knowledge and application in power system reliability. As many readers will be aware, we have collaborated in many ways over a relatively long period and have co-authored two other books on reliability evaluation. Both of these previous books were structured as teaching texts. This present book is not a discourse on "how to do reliability evaluation" but a discussion on "why it should be done and what can be done and achieved" and as such does not replace or conflict with the previous books. The three books are complementary and each enhances the others. The material contained in this book is not specifically original since it is based on information which we have published in other forms either jointly or as co authors with various other people, particularly our many research students. We sincerely acknowledge the important contributions made by all these students and colleagues. There are too many to mention individually in this preface but their names appear frequently in the references at the end of each chapter.
A Guide To Practical Human Reliability Assessment
Author: B. Kirwan
Publisher: CRC Press
ISBN: 1351469878
Category : Technology & Engineering
Languages : en
Pages : 608
Book Description
Human error is here to stay. This perhaps obvious statement has a profound implication for society when faced with the types of hazardous system accidents that have occurred over the past three decades. Such accidents have been strongly influenced by human error, yet many system designs in existence or being planned and built do not take human error into consideration.; "A Guide to Practical Human Reliability Assessment" is a practical and pragmatic guide to the techniques and approaches of human reliability assessment HRA. lt offers the reader explanatory and practical methods which have been applied and have worked in high technology and high risk assessments - particularly but not exclusively to potentially hazardous industries such as exist in process control, nuclear power, chemical and petrochemical industries. A Guide to Practical Human Reliability Assessment offers the practitioner a comprehensive tool-kit of different approaches along with guidance on selecting different methods for different applications. It covers the risk assessment and the HRA process, as well as methods of task analysis, error identification, quantification, representation of errors in the risk analysis, followed by error reduction analysis, quality assurance and documentation. There are also a number of detailed case studies from nuclear, chemical, offshore, and marine HRA'S, exemplfying the image of techniques and the impact of HRA in existing and design-stage systems.
Publisher: CRC Press
ISBN: 1351469878
Category : Technology & Engineering
Languages : en
Pages : 608
Book Description
Human error is here to stay. This perhaps obvious statement has a profound implication for society when faced with the types of hazardous system accidents that have occurred over the past three decades. Such accidents have been strongly influenced by human error, yet many system designs in existence or being planned and built do not take human error into consideration.; "A Guide to Practical Human Reliability Assessment" is a practical and pragmatic guide to the techniques and approaches of human reliability assessment HRA. lt offers the reader explanatory and practical methods which have been applied and have worked in high technology and high risk assessments - particularly but not exclusively to potentially hazardous industries such as exist in process control, nuclear power, chemical and petrochemical industries. A Guide to Practical Human Reliability Assessment offers the practitioner a comprehensive tool-kit of different approaches along with guidance on selecting different methods for different applications. It covers the risk assessment and the HRA process, as well as methods of task analysis, error identification, quantification, representation of errors in the risk analysis, followed by error reduction analysis, quality assurance and documentation. There are also a number of detailed case studies from nuclear, chemical, offshore, and marine HRA'S, exemplfying the image of techniques and the impact of HRA in existing and design-stage systems.
Reliability Assessment of Electric Power Systems Using Monte Carlo Methods
Author: Billinton
Publisher: Springer Science & Business Media
ISBN: 1489913467
Category : Technology & Engineering
Languages : en
Pages : 361
Book Description
The application of quantitative reliability evaluation in electric power sys tems has now evolved to the point at which most utilities use these techniques in one or more areas of their planning, design, and operation. Most of the techniques in use are based on analytical models and resulting analytical evaluation procedures. Improvements in and availability of high-speed digi tal computers have created the opportunity to analyze many of these prob lems using stochastic simulation methods and over the last decade there has been increased interest in and use made of Monte Carlo simulation in quantitative power system reliability assessment. Monte Carlo simulation is not a new concept and recorded applications have existed for at least 50 yr. However, localized high-speed computers with large-capacity storage have made Monte Carlo simulation an available and sometimes preferable option for many power system reliability applications. Monte Carlo simulation is also an integral part of a modern undergrad uate or graduate course on reliability evaluation of general engineering systems or specialized areas such as electric power systems. It is hoped that this textbook will help formalize the many existing applications of Monte Carlo simulation and assist in their integration in teaching programs. This book presents the basic concepts associated with Monte Carlo simulation.
Publisher: Springer Science & Business Media
ISBN: 1489913467
Category : Technology & Engineering
Languages : en
Pages : 361
Book Description
The application of quantitative reliability evaluation in electric power sys tems has now evolved to the point at which most utilities use these techniques in one or more areas of their planning, design, and operation. Most of the techniques in use are based on analytical models and resulting analytical evaluation procedures. Improvements in and availability of high-speed digi tal computers have created the opportunity to analyze many of these prob lems using stochastic simulation methods and over the last decade there has been increased interest in and use made of Monte Carlo simulation in quantitative power system reliability assessment. Monte Carlo simulation is not a new concept and recorded applications have existed for at least 50 yr. However, localized high-speed computers with large-capacity storage have made Monte Carlo simulation an available and sometimes preferable option for many power system reliability applications. Monte Carlo simulation is also an integral part of a modern undergrad uate or graduate course on reliability evaluation of general engineering systems or specialized areas such as electric power systems. It is hoped that this textbook will help formalize the many existing applications of Monte Carlo simulation and assist in their integration in teaching programs. This book presents the basic concepts associated with Monte Carlo simulation.
Assessment of Power System Reliability
Author: Marko Čepin
Publisher: Springer Science & Business Media
ISBN: 0857296884
Category : Technology & Engineering
Languages : en
Pages : 302
Book Description
The importance of power system reliability is demonstrated when our electricity supply is disrupted, whether it decreases the comfort of our free time at home or causes the shutdown of our companies and results in huge economic deficits. The objective of Assessment of Power System Reliability is to contribute to the improvement of power system reliability. It consists of six parts divided into twenty chapters. The first part introduces the important background issues that affect power system reliability. The second part presents the reliability methods that are used for analyses of technical systems and processes. The third part discusses power flow analysis methods, because the dynamic aspect of a power system is an important part of related reliability assessments. The fourth part explores various aspects of the reliability assessment of power systems and their parts. The fifth part covers optimization methods. The sixth part looks at the application of reliability and optimization methods. Assessment of Power System Reliability has been written in straightforward language that continues into the mathematical representation of the methods. Power engineers and developers will appreciate the emphasis on practical usage, while researchers and advanced students will benefit from the simple examples that can facilitate their understanding of the theory behind power system reliability and that outline the procedure for application of the presented methods.
Publisher: Springer Science & Business Media
ISBN: 0857296884
Category : Technology & Engineering
Languages : en
Pages : 302
Book Description
The importance of power system reliability is demonstrated when our electricity supply is disrupted, whether it decreases the comfort of our free time at home or causes the shutdown of our companies and results in huge economic deficits. The objective of Assessment of Power System Reliability is to contribute to the improvement of power system reliability. It consists of six parts divided into twenty chapters. The first part introduces the important background issues that affect power system reliability. The second part presents the reliability methods that are used for analyses of technical systems and processes. The third part discusses power flow analysis methods, because the dynamic aspect of a power system is an important part of related reliability assessments. The fourth part explores various aspects of the reliability assessment of power systems and their parts. The fifth part covers optimization methods. The sixth part looks at the application of reliability and optimization methods. Assessment of Power System Reliability has been written in straightforward language that continues into the mathematical representation of the methods. Power engineers and developers will appreciate the emphasis on practical usage, while researchers and advanced students will benefit from the simple examples that can facilitate their understanding of the theory behind power system reliability and that outline the procedure for application of the presented methods.
Reliability Assessment Using Stochastic Finite Element Analysis
Author: Achintya Haldar
Publisher: John Wiley & Sons
ISBN: 9780471369615
Category : Technology & Engineering
Languages : en
Pages : 358
Book Description
The first complete guide to using the Stochastic Finite Element Method for reliability assessment Unlike other analytical reliability estimation techniques, the Stochastic Finite Element Method (SFEM) can be used for both implicit and explicit performance functions, making it a particularly powerful and robust tool for today's engineer. This book, written by two pioneers in SFEM-based methodologies, shows how to use SFEM for the reliability analysis of a wide range of structures. It begins by reviewing essential risk concepts, currently available risk evaluation procedures, and the use of analytical and sampling methods in estimating risk. Next, it introduces SFEM evaluation procedures, with detailed coverage of displacement-based and stress-based deterministic finite element approaches. Linear, nonlinear, static, and dynamic problems are considered separately to demonstrate the robustness of the methods. The risk or reliability estimation procedure for each case is presented in different chapters, with theory complemented by a useful series of examples. Integrating advanced concepts in risk-based design, finite elements, and mechanics, Reliability Assessment Using Stochastic Finite Element Analysis is vital reading for engineering professionals and students in all areas of the field.
Publisher: John Wiley & Sons
ISBN: 9780471369615
Category : Technology & Engineering
Languages : en
Pages : 358
Book Description
The first complete guide to using the Stochastic Finite Element Method for reliability assessment Unlike other analytical reliability estimation techniques, the Stochastic Finite Element Method (SFEM) can be used for both implicit and explicit performance functions, making it a particularly powerful and robust tool for today's engineer. This book, written by two pioneers in SFEM-based methodologies, shows how to use SFEM for the reliability analysis of a wide range of structures. It begins by reviewing essential risk concepts, currently available risk evaluation procedures, and the use of analytical and sampling methods in estimating risk. Next, it introduces SFEM evaluation procedures, with detailed coverage of displacement-based and stress-based deterministic finite element approaches. Linear, nonlinear, static, and dynamic problems are considered separately to demonstrate the robustness of the methods. The risk or reliability estimation procedure for each case is presented in different chapters, with theory complemented by a useful series of examples. Integrating advanced concepts in risk-based design, finite elements, and mechanics, Reliability Assessment Using Stochastic Finite Element Analysis is vital reading for engineering professionals and students in all areas of the field.
Safety and performance concept. Reliability assessment of concrete structures
Author: fib Fédération internationale du béton
Publisher: FIB - Féd. Int. du Béton
ISBN: 2883941262
Category : Technology & Engineering
Languages : en
Pages : 375
Book Description
Concrete structures have been built for more than 100 years. At first, reinforced concrete was used for buildings and bridges, even for those with large spans. Lack of methods for structural analysis led to conservative and reliable design. Application of prestressed concrete started in the 40s and strongly developed in the 60s. The spans of bridges and other structures like halls, industrial structures, stands, etc. grew significantly larger. At that time, the knowledge of material behaviour, durability and overall structural performance was substantially less developed than it is today. In many countries statically determined systems with a fragile behavior were designed for cast in situ as well as precast structures. Lack of redundancy resulted in a low level of robustness in structural systems. In addition, the technical level of individual technologies (e.g. grouting of prestressed cables) was lower than it is today. The number of concrete structures, including prestressed ones, is extremely high. Over time and with increased loading, the necessity of maintaining safety and performance parameters is impossible without careful maintenance, smaller interventions, strengthening and even larger reconstructions. Although some claim that unsatisfactory structures should be replaced by new ones, it is often impossible, as authorities, in general, have only limited resources. Most structures have to remain in service, probably even longer than initially expected. In order to keep the existing concrete structures in an acceptable condition, the development of methods for monitoring, inspection and assessment, structural identification, nonlinear analysis, life cycle evaluation and safety and prediction of the future behaviour, etc. is necessary. The scatter of individual input parameters must be considered as a whole. This requires probabilistic approaches to individual partial problems and to the overall analysis. The members of the fib Task Group 2.8 “Safety and performance concepts” wrote, on the basis of the actual knowledge and experience, a comprehensive document that provides crucial knowledge for existing structures, which is also applicable to new structures. This guide to good practice is divided into 10 basic chapters dealing with individual issues that are critical for activities associated with preferably existing concrete structures. Bulletin 86 starts with the specification of the performance-based requirements during the entire lifecycle. The risk issues are described in chapter two. An extensive part is devoted to structural reliability, including practical engineering approaches and reliability assessment of existing structures. Safety concepts for design consider the lifetime of structures and summarise safety formats from simple partial safety factors to develop approaches suitable for application in sophisticated, probabilistic, non-linear analyses. Testing for design and the determination of design values from the tests is an extremely important issue. This is especially true for the evaluation of existing structures. Inspection and monitoring of existing structures are essential for maintenance, for the prediction of remaining service life and for the planning of interventions. Chapter nine presents probabilistically-based models for material degradation processes. Finally, case studies are presented in chapter ten. The results of the concrete structures monitoring as well as their application for assessment and prediction of their future behaviour are shown. The risk analysis of highway bridges was based on extensive monitoring and numerical evaluation programs. Case studies perfectly illustrate the application of the methods presented in the Bulletin. The information provided in this guide is very useful for practitioners and scientists. It provides the reader with general procedures, from the specification of requirements, monitoring, assessment to the prediction of the structures’ lifecycles. However, one must have a sufficiently large amount of experimental and other data (e.g. construction experience) in order to use these methods correctly. This data finally allows for a statistical evaluation. As it is shown in case studies, extensive monitoring programs are necessary. The publication of this guide and other documents developed within the fib will hopefully help convince the authorities responsible for safe and fluent traffic on bridges and other structures that the costs spent in monitoring are first rather small, and second, they will repay in the form of a serious assessment providing necessary information for decision about maintenance and future of important structures.
Publisher: FIB - Féd. Int. du Béton
ISBN: 2883941262
Category : Technology & Engineering
Languages : en
Pages : 375
Book Description
Concrete structures have been built for more than 100 years. At first, reinforced concrete was used for buildings and bridges, even for those with large spans. Lack of methods for structural analysis led to conservative and reliable design. Application of prestressed concrete started in the 40s and strongly developed in the 60s. The spans of bridges and other structures like halls, industrial structures, stands, etc. grew significantly larger. At that time, the knowledge of material behaviour, durability and overall structural performance was substantially less developed than it is today. In many countries statically determined systems with a fragile behavior were designed for cast in situ as well as precast structures. Lack of redundancy resulted in a low level of robustness in structural systems. In addition, the technical level of individual technologies (e.g. grouting of prestressed cables) was lower than it is today. The number of concrete structures, including prestressed ones, is extremely high. Over time and with increased loading, the necessity of maintaining safety and performance parameters is impossible without careful maintenance, smaller interventions, strengthening and even larger reconstructions. Although some claim that unsatisfactory structures should be replaced by new ones, it is often impossible, as authorities, in general, have only limited resources. Most structures have to remain in service, probably even longer than initially expected. In order to keep the existing concrete structures in an acceptable condition, the development of methods for monitoring, inspection and assessment, structural identification, nonlinear analysis, life cycle evaluation and safety and prediction of the future behaviour, etc. is necessary. The scatter of individual input parameters must be considered as a whole. This requires probabilistic approaches to individual partial problems and to the overall analysis. The members of the fib Task Group 2.8 “Safety and performance concepts” wrote, on the basis of the actual knowledge and experience, a comprehensive document that provides crucial knowledge for existing structures, which is also applicable to new structures. This guide to good practice is divided into 10 basic chapters dealing with individual issues that are critical for activities associated with preferably existing concrete structures. Bulletin 86 starts with the specification of the performance-based requirements during the entire lifecycle. The risk issues are described in chapter two. An extensive part is devoted to structural reliability, including practical engineering approaches and reliability assessment of existing structures. Safety concepts for design consider the lifetime of structures and summarise safety formats from simple partial safety factors to develop approaches suitable for application in sophisticated, probabilistic, non-linear analyses. Testing for design and the determination of design values from the tests is an extremely important issue. This is especially true for the evaluation of existing structures. Inspection and monitoring of existing structures are essential for maintenance, for the prediction of remaining service life and for the planning of interventions. Chapter nine presents probabilistically-based models for material degradation processes. Finally, case studies are presented in chapter ten. The results of the concrete structures monitoring as well as their application for assessment and prediction of their future behaviour are shown. The risk analysis of highway bridges was based on extensive monitoring and numerical evaluation programs. Case studies perfectly illustrate the application of the methods presented in the Bulletin. The information provided in this guide is very useful for practitioners and scientists. It provides the reader with general procedures, from the specification of requirements, monitoring, assessment to the prediction of the structures’ lifecycles. However, one must have a sufficiently large amount of experimental and other data (e.g. construction experience) in order to use these methods correctly. This data finally allows for a statistical evaluation. As it is shown in case studies, extensive monitoring programs are necessary. The publication of this guide and other documents developed within the fib will hopefully help convince the authorities responsible for safe and fluent traffic on bridges and other structures that the costs spent in monitoring are first rather small, and second, they will repay in the form of a serious assessment providing necessary information for decision about maintenance and future of important structures.
Probabilistic Physics of Failure Approach to Reliability
Author: Mohammad Modarres
Publisher: John Wiley & Sons
ISBN: 1119388686
Category : Technology & Engineering
Languages : en
Pages : 289
Book Description
The book presents highly technical approaches to the probabilistic physics of failure analysis and applications to accelerated life and degradation testing to reliability prediction and assessment. Beside reviewing a select set of important failure mechanisms, the book covers basic and advanced methods of performing accelerated life test and accelerated degradation tests and analyzing the test data. The book includes a large number of very useful examples to help readers understand complicated methods described. Finally, MATLAB, R and OpenBUGS computer scripts are provided and discussed to support complex computational probabilistic analyses introduced.
Publisher: John Wiley & Sons
ISBN: 1119388686
Category : Technology & Engineering
Languages : en
Pages : 289
Book Description
The book presents highly technical approaches to the probabilistic physics of failure analysis and applications to accelerated life and degradation testing to reliability prediction and assessment. Beside reviewing a select set of important failure mechanisms, the book covers basic and advanced methods of performing accelerated life test and accelerated degradation tests and analyzing the test data. The book includes a large number of very useful examples to help readers understand complicated methods described. Finally, MATLAB, R and OpenBUGS computer scripts are provided and discussed to support complex computational probabilistic analyses introduced.