Author: Paul Strange
Publisher: Cambridge University Press
ISBN: 9780521565837
Category : Science
Languages : en
Pages : 614
Book Description
This graduate text introduces relativistic quantum theory, emphasising its important applications in condensed matter physics. Relativistic quantum theory is the unification into a consistent theory of Einstein's theory of relativity and the quantum mechanics of Bohr, Schrödinger, and Heisenberg, etc. Beginning with basic theory, the book then describes essential topics. Many worked examples and exercises are included along with an extensive reference list. This clear account of a crucial topic in science will be valuable to graduates and researchers working in condensed matter physics and quantum physics.
Relativistic Quantum Physics
Author: Tommy Ohlsson
Publisher: Cambridge University Press
ISBN: 1139504320
Category : Science
Languages : en
Pages : 311
Book Description
Quantum physics and special relativity theory were two of the greatest breakthroughs in physics during the twentieth century and contributed to paradigm shifts in physics. This book combines these two discoveries to provide a complete description of the fundamentals of relativistic quantum physics, guiding the reader effortlessly from relativistic quantum mechanics to basic quantum field theory. The book gives a thorough and detailed treatment of the subject, beginning with the classification of particles, the Klein–Gordon equation and the Dirac equation. It then moves on to the canonical quantization procedure of the Klein–Gordon, Dirac and electromagnetic fields. Classical Yang–Mills theory, the LSZ formalism, perturbation theory, elementary processes in QED are introduced, and regularization, renormalization and radiative corrections are explored. With exercises scattered through the text and problems at the end of most chapters, the book is ideal for advanced undergraduate and graduate students in theoretical physics.
Publisher: Cambridge University Press
ISBN: 1139504320
Category : Science
Languages : en
Pages : 311
Book Description
Quantum physics and special relativity theory were two of the greatest breakthroughs in physics during the twentieth century and contributed to paradigm shifts in physics. This book combines these two discoveries to provide a complete description of the fundamentals of relativistic quantum physics, guiding the reader effortlessly from relativistic quantum mechanics to basic quantum field theory. The book gives a thorough and detailed treatment of the subject, beginning with the classification of particles, the Klein–Gordon equation and the Dirac equation. It then moves on to the canonical quantization procedure of the Klein–Gordon, Dirac and electromagnetic fields. Classical Yang–Mills theory, the LSZ formalism, perturbation theory, elementary processes in QED are introduced, and regularization, renormalization and radiative corrections are explored. With exercises scattered through the text and problems at the end of most chapters, the book is ideal for advanced undergraduate and graduate students in theoretical physics.
Relativistic Quantum Mechanics
Author: Paul Strange
Publisher: Cambridge University Press
ISBN: 9780521565837
Category : Science
Languages : en
Pages : 614
Book Description
This graduate text introduces relativistic quantum theory, emphasising its important applications in condensed matter physics. Relativistic quantum theory is the unification into a consistent theory of Einstein's theory of relativity and the quantum mechanics of Bohr, Schrödinger, and Heisenberg, etc. Beginning with basic theory, the book then describes essential topics. Many worked examples and exercises are included along with an extensive reference list. This clear account of a crucial topic in science will be valuable to graduates and researchers working in condensed matter physics and quantum physics.
Publisher: Cambridge University Press
ISBN: 9780521565837
Category : Science
Languages : en
Pages : 614
Book Description
This graduate text introduces relativistic quantum theory, emphasising its important applications in condensed matter physics. Relativistic quantum theory is the unification into a consistent theory of Einstein's theory of relativity and the quantum mechanics of Bohr, Schrödinger, and Heisenberg, etc. Beginning with basic theory, the book then describes essential topics. Many worked examples and exercises are included along with an extensive reference list. This clear account of a crucial topic in science will be valuable to graduates and researchers working in condensed matter physics and quantum physics.
Relativistic Quantum Mechanics and Introduction to Field Theory
Author: Francisco J. Yndurain
Publisher: Springer Science & Business Media
ISBN: 3642610579
Category : Mathematics
Languages : en
Pages : 342
Book Description
This advanced textbook supplies graduate students with a primer in quantum theory. A variety of processes are discussed with concepts such as potentials, classical current distributions, prescribed external fields dealt with in the framework of relativistic quantum mechanics. Then, in an introduction to field theory, the author emphasizes the deduction of the said potentials or currents. A modern presentation of the subject together with many exercises, unique in its unusual underlying concept of combining relativistic quantum mechanics with basic quantum field theory.
Publisher: Springer Science & Business Media
ISBN: 3642610579
Category : Mathematics
Languages : en
Pages : 342
Book Description
This advanced textbook supplies graduate students with a primer in quantum theory. A variety of processes are discussed with concepts such as potentials, classical current distributions, prescribed external fields dealt with in the framework of relativistic quantum mechanics. Then, in an introduction to field theory, the author emphasizes the deduction of the said potentials or currents. A modern presentation of the subject together with many exercises, unique in its unusual underlying concept of combining relativistic quantum mechanics with basic quantum field theory.
LSC Relativistic Quantum Mechanics
Author: James Bjorken
Publisher: McGraw-Hill Science/Engineering/Math
ISBN: 9780072320022
Category : Science
Languages : en
Pages : 0
Book Description
In this text the authors develop a propagator theory of Dirac particles, photons, and Klein-Gordon mesons and per- form a series of calculations designed to illustrate various useful techniques and concepts in electromagnetic, weak, and strong interactions. these include defining and implementing the renormalization program and evaluating effects of radia- tive corrections, such as the Lamb shift, in low-order calculations. The necessary background for the book is pro- vided by a course in nonrelativistic quantum mechanics at the general level of Schiff's text, QUANTUM MECHANICS.
Publisher: McGraw-Hill Science/Engineering/Math
ISBN: 9780072320022
Category : Science
Languages : en
Pages : 0
Book Description
In this text the authors develop a propagator theory of Dirac particles, photons, and Klein-Gordon mesons and per- form a series of calculations designed to illustrate various useful techniques and concepts in electromagnetic, weak, and strong interactions. these include defining and implementing the renormalization program and evaluating effects of radia- tive corrections, such as the Lamb shift, in low-order calculations. The necessary background for the book is pro- vided by a course in nonrelativistic quantum mechanics at the general level of Schiff's text, QUANTUM MECHANICS.
Relativistic Quantum Mechanics. Wave Equations
Author: Walter Greiner
Publisher: Springer Science & Business Media
ISBN: 3662042754
Category : Science
Languages : en
Pages : 439
Book Description
Relativistic Quantum Mechanics. Wave Equations concentrates mainly on the wave equations for spin-0 and spin-1/2 particles. Chapter 1 deals with the Klein-Gordon equation and its properties and applications. The chapters that follow introduce the Dirac equation, investigate its covariance properties and present various approaches to obtaining solutions. Numerous applications are discussed in detail, including the two-center Dirac equation, hole theory, CPT symmetry, Klein's paradox, and relativistic symmetry principles. Chapter 15 presents the relativistic wave equations for higher spin (Proca, Rarita-Schwinger, and Bargmann-Wigner). The extensive presentation of the mathematical tools and the 62 worked examples and problems make this a unique text for an advanced quantum mechanics course. This third edition has been slightly revised to bring the text up-to-date.
Publisher: Springer Science & Business Media
ISBN: 3662042754
Category : Science
Languages : en
Pages : 439
Book Description
Relativistic Quantum Mechanics. Wave Equations concentrates mainly on the wave equations for spin-0 and spin-1/2 particles. Chapter 1 deals with the Klein-Gordon equation and its properties and applications. The chapters that follow introduce the Dirac equation, investigate its covariance properties and present various approaches to obtaining solutions. Numerous applications are discussed in detail, including the two-center Dirac equation, hole theory, CPT symmetry, Klein's paradox, and relativistic symmetry principles. Chapter 15 presents the relativistic wave equations for higher spin (Proca, Rarita-Schwinger, and Bargmann-Wigner). The extensive presentation of the mathematical tools and the 62 worked examples and problems make this a unique text for an advanced quantum mechanics course. This third edition has been slightly revised to bring the text up-to-date.
Relativistic Quantum Mechanics and Field Theory
Author: Franz Gross
Publisher: John Wiley & Sons
ISBN: 3527617345
Category : Science
Languages : en
Pages : 643
Book Description
An accessible, comprehensive reference to modern quantum mechanics and field theory. In surveying available books on advanced quantum mechanics and field theory, Franz Gross determined that while established books were outdated, newer titles tended to focus on recent developments and disregard the basics. Relativistic Quantum Mechanics and Field Theory fills this striking gap in the field. With a strong emphasis on applications to practical problems as well as calculations, Dr. Gross provides complete, up-to-date coverage of both elementary and advanced topics essential for a well-rounded understanding of the field. Developing the material at a level accessible even to newcomers to quantum mechanics, the book begins with topics that every physicist should know-quantization of the electromagnetic field, relativistic one body wave equations, and the theoretical explanation of atomic decay. Subsequent chapters prepare readers for advanced work, covering such major topics as gauge theories, path integral techniques, spontaneous symmetry breaking, and an introduction to QCD, chiral symmetry, and the Standard Model. A special chapter is devoted to relativistic bound state wave equations-an important topic that is often overlooked in other books. Clear and concise throughout, Relativistic Quantum Mechanics and Field Theory boasts examples from atomic and nuclear physics as well as particle physics, and includes appendices with background material. It is an essential reference for anyone working in quantum mechanics today.
Publisher: John Wiley & Sons
ISBN: 3527617345
Category : Science
Languages : en
Pages : 643
Book Description
An accessible, comprehensive reference to modern quantum mechanics and field theory. In surveying available books on advanced quantum mechanics and field theory, Franz Gross determined that while established books were outdated, newer titles tended to focus on recent developments and disregard the basics. Relativistic Quantum Mechanics and Field Theory fills this striking gap in the field. With a strong emphasis on applications to practical problems as well as calculations, Dr. Gross provides complete, up-to-date coverage of both elementary and advanced topics essential for a well-rounded understanding of the field. Developing the material at a level accessible even to newcomers to quantum mechanics, the book begins with topics that every physicist should know-quantization of the electromagnetic field, relativistic one body wave equations, and the theoretical explanation of atomic decay. Subsequent chapters prepare readers for advanced work, covering such major topics as gauge theories, path integral techniques, spontaneous symmetry breaking, and an introduction to QCD, chiral symmetry, and the Standard Model. A special chapter is devoted to relativistic bound state wave equations-an important topic that is often overlooked in other books. Clear and concise throughout, Relativistic Quantum Mechanics and Field Theory boasts examples from atomic and nuclear physics as well as particle physics, and includes appendices with background material. It is an essential reference for anyone working in quantum mechanics today.
Relativistic Quantum Mechanics
Author: Armin Wachter
Publisher: Springer Science & Business Media
ISBN: 9048136458
Category : Science
Languages : en
Pages : 385
Book Description
* Which problems do arise within relativistic enhancements of the Schrödinger theory, especially if one adheres to the usual one-particle interpretation? * To what extent can these problems be overcome? * What is the physical necessity of quantum field theories? In many textbooks, only insufficient answers to these fundamental questions are provided by treating the relativistic quantum mechanical one-particle concept very superficially and instead introducing field quantization as soon as possible. By contrast, this book emphasizes particularly this point of view (relativistic quantum mechanics in the ''narrow sense''): it extensively discusses the relativistic one-particle view and reveals its problems and limitations, therefore illustrating the necessity of quantized fields in a physically comprehensible way. The first two chapters contain a detailed presentation and comparison of the Klein-Gordon and Dirac theory, always with a view to the non-relativistic theory. In the third chapter, we consider relativistic scattering processes and develop the Feynman rules from propagator techniques. This is where the indispensability of quantum field theory reasoning becomes apparent and basic quantum field theory concepts are introduced. This textbook addresses undergraduate and graduate Physics students who are interested in a clearly arranged and structured presentation of relativistic quantum mechanics in the "narrow sense" and its connection to quantum field theories. Each section contains a short summary and exercises with solutions. A mathematical appendix rounds out this excellent textbook on relativistic quantum mechanics.
Publisher: Springer Science & Business Media
ISBN: 9048136458
Category : Science
Languages : en
Pages : 385
Book Description
* Which problems do arise within relativistic enhancements of the Schrödinger theory, especially if one adheres to the usual one-particle interpretation? * To what extent can these problems be overcome? * What is the physical necessity of quantum field theories? In many textbooks, only insufficient answers to these fundamental questions are provided by treating the relativistic quantum mechanical one-particle concept very superficially and instead introducing field quantization as soon as possible. By contrast, this book emphasizes particularly this point of view (relativistic quantum mechanics in the ''narrow sense''): it extensively discusses the relativistic one-particle view and reveals its problems and limitations, therefore illustrating the necessity of quantized fields in a physically comprehensible way. The first two chapters contain a detailed presentation and comparison of the Klein-Gordon and Dirac theory, always with a view to the non-relativistic theory. In the third chapter, we consider relativistic scattering processes and develop the Feynman rules from propagator techniques. This is where the indispensability of quantum field theory reasoning becomes apparent and basic quantum field theory concepts are introduced. This textbook addresses undergraduate and graduate Physics students who are interested in a clearly arranged and structured presentation of relativistic quantum mechanics in the "narrow sense" and its connection to quantum field theories. Each section contains a short summary and exercises with solutions. A mathematical appendix rounds out this excellent textbook on relativistic quantum mechanics.
Relativistic Quantum Mechanics
Author: Hartmut Pilkuhn
Publisher: Springer Science & Business Media
ISBN: 366205275X
Category : Science
Languages : en
Pages : 244
Book Description
In this book, quantum mechanics is developed from the outset on a relativistic basis, using the superposition principle, Lorentz invariance and gauge invariance. Nonrelativistic quantum mechanics appears as a special case, and classical relativistic mechanics as another one. These special cases are important for giving plausible names to operators, for example "orbital angular momentum", "spin" or "magnetic moment". A subject which is treated for the first time in this book is the theory of binaries in terms of differential equations which have the mathematical structure of the corresponding one-body equations (Klein--Gordon for two spin- less particles, Dirac for two spinor particles).
Publisher: Springer Science & Business Media
ISBN: 366205275X
Category : Science
Languages : en
Pages : 244
Book Description
In this book, quantum mechanics is developed from the outset on a relativistic basis, using the superposition principle, Lorentz invariance and gauge invariance. Nonrelativistic quantum mechanics appears as a special case, and classical relativistic mechanics as another one. These special cases are important for giving plausible names to operators, for example "orbital angular momentum", "spin" or "magnetic moment". A subject which is treated for the first time in this book is the theory of binaries in terms of differential equations which have the mathematical structure of the corresponding one-body equations (Klein--Gordon for two spin- less particles, Dirac for two spinor particles).
Relativistic Quantum Mechanics of Leptons and Fields
Author: W.T. Grandy
Publisher: Springer Science & Business Media
ISBN: 9780792310495
Category : Science
Languages : en
Pages : 458
Book Description
The material contained in this work concerns relativistic quantum mechanics, and as such pertains to classical fields. On the one hand it is meant to serve as a text on the subject, a desire stemming from the author's fruitless searches for an adequate, up-to-date reference when lecturing on these topics. At times the supplementary material was found to exceed by far that in the assigned text. On the other hand, there is some flavor of a monograph to what follows, most particularly in the later chapters, for a major goal is to demonstrate just how far we can advance our understanding of the behavior of stable particles and their interactions without introducing quantized fields. Those wishing to describe the world in this way may view the result as a point of departure, despite the fact that their wish remains unfulfilled. Confirmed quantum-field theorists, however, will doubtless view it as a summary of just why they feel compelled to quantize the fields. Approximately half the book is devoted to the single-particle Dirac equation and its solutions. A great deal of detail is provided in this respect, and the discus sion is reasonably comprehensive. The Dirac equation is extraordinarily important in its own right, particularly as a basis for quantum electrodynamics (QED), and is thus worthy of extensive study.
Publisher: Springer Science & Business Media
ISBN: 9780792310495
Category : Science
Languages : en
Pages : 458
Book Description
The material contained in this work concerns relativistic quantum mechanics, and as such pertains to classical fields. On the one hand it is meant to serve as a text on the subject, a desire stemming from the author's fruitless searches for an adequate, up-to-date reference when lecturing on these topics. At times the supplementary material was found to exceed by far that in the assigned text. On the other hand, there is some flavor of a monograph to what follows, most particularly in the later chapters, for a major goal is to demonstrate just how far we can advance our understanding of the behavior of stable particles and their interactions without introducing quantized fields. Those wishing to describe the world in this way may view the result as a point of departure, despite the fact that their wish remains unfulfilled. Confirmed quantum-field theorists, however, will doubtless view it as a summary of just why they feel compelled to quantize the fields. Approximately half the book is devoted to the single-particle Dirac equation and its solutions. A great deal of detail is provided in this respect, and the discus sion is reasonably comprehensive. The Dirac equation is extraordinarily important in its own right, particularly as a basis for quantum electrodynamics (QED), and is thus worthy of extensive study.
Relativistic Quantum Theory of Atoms and Molecules
Author: Ian P Grant
Publisher: Springer Science & Business Media
ISBN: 0387350691
Category : Science
Languages : en
Pages : 813
Book Description
This book is intended for physicists and chemists who need to understand the theory of atomic and molecular structure and processes, and who wish to apply the theory to practical problems. As far as practicable, the book provides a self-contained account of the theory of relativistic atomic and molecular structure, based on the accepted formalism of bound-state Quantum Electrodynamics. The author was elected a Fellow of the Royal Society of London in 1992.
Publisher: Springer Science & Business Media
ISBN: 0387350691
Category : Science
Languages : en
Pages : 813
Book Description
This book is intended for physicists and chemists who need to understand the theory of atomic and molecular structure and processes, and who wish to apply the theory to practical problems. As far as practicable, the book provides a self-contained account of the theory of relativistic atomic and molecular structure, based on the accepted formalism of bound-state Quantum Electrodynamics. The author was elected a Fellow of the Royal Society of London in 1992.