Reinforcement Learning Methods in Speech and Language Technology

Reinforcement Learning Methods in Speech and Language Technology PDF Author: Baihan Lin
Publisher: Springer Nature
ISBN: 3031537203
Category :
Languages : en
Pages : 205

Get Book Here

Book Description

Reinforcement Learning Methods in Speech and Language Technology

Reinforcement Learning Methods in Speech and Language Technology PDF Author: Baihan Lin
Publisher: Springer Nature
ISBN: 3031537203
Category :
Languages : en
Pages : 205

Get Book Here

Book Description


Data-Driven Methods for Adaptive Spoken Dialogue Systems

Data-Driven Methods for Adaptive Spoken Dialogue Systems PDF Author: Oliver Lemon
Publisher: Springer Science & Business Media
ISBN: 1461448026
Category : Computers
Languages : en
Pages : 184

Get Book Here

Book Description
Data driven methods have long been used in Automatic Speech Recognition (ASR) and Text-To-Speech (TTS) synthesis and have more recently been introduced for dialogue management, spoken language understanding, and Natural Language Generation. Machine learning is now present “end-to-end” in Spoken Dialogue Systems (SDS). However, these techniques require data collection and annotation campaigns, which can be time-consuming and expensive, as well as dataset expansion by simulation. In this book, we provide an overview of the current state of the field and of recent advances, with a specific focus on adaptivity.

Reinforcement Learning Methods in Speech and Language Technology

Reinforcement Learning Methods in Speech and Language Technology PDF Author: Baihan Lin
Publisher: Springer
ISBN: 9783031537196
Category : Technology & Engineering
Languages : en
Pages : 0

Get Book Here

Book Description
This book offers a comprehensive guide to reinforcement learning (RL) and bandits for speech and language technology. The book first provides an overview of RL and bandit methods and their applications to various speech and language tasks. The author then covers essential topics such as the formulations for speech and language tasks into RL problems, RL-based solutions in automatic speech recognition, speaker recognition, diarization, natural language understanding, text-to-speech synthesis, natural language generation, and conversational recommendation systems. The book also presents emerging strategies in RL methods, along with open questions and challenges in RL-based speech and language technology. With a focus on real-world applications, the book provides step-by-step guidance on how to use RL and bandit methods to solve problems in speech and language technology. The book also includes case studies and practical tips to help readers apply RL and bandit methods to their own projects. The book is a timely resource for speech and language researchers, engineers, students, and practitioners who are interested in learning how RL methods can improve the performance of speech and language systems and provide new interactive learning paradigms from an interface design point of view.

Deep Learning for NLP and Speech Recognition

Deep Learning for NLP and Speech Recognition PDF Author: Uday Kamath
Publisher: Springer
ISBN: 3030145964
Category : Computers
Languages : en
Pages : 640

Get Book Here

Book Description
This textbook explains Deep Learning Architecture, with applications to various NLP Tasks, including Document Classification, Machine Translation, Language Modeling, and Speech Recognition. With the widespread adoption of deep learning, natural language processing (NLP),and speech applications in many areas (including Finance, Healthcare, and Government) there is a growing need for one comprehensive resource that maps deep learning techniques to NLP and speech and provides insights into using the tools and libraries for real-world applications. Deep Learning for NLP and Speech Recognition explains recent deep learning methods applicable to NLP and speech, provides state-of-the-art approaches, and offers real-world case studies with code to provide hands-on experience. Many books focus on deep learning theory or deep learning for NLP-specific tasks while others are cookbooks for tools and libraries, but the constant flux of new algorithms, tools, frameworks, and libraries in a rapidly evolving landscape means that there are few available texts that offer the material in this book. The book is organized into three parts, aligning to different groups of readers and their expertise. The three parts are: Machine Learning, NLP, and Speech Introduction The first part has three chapters that introduce readers to the fields of NLP, speech recognition, deep learning and machine learning with basic theory and hands-on case studies using Python-based tools and libraries. Deep Learning Basics The five chapters in the second part introduce deep learning and various topics that are crucial for speech and text processing, including word embeddings, convolutional neural networks, recurrent neural networks and speech recognition basics. Theory, practical tips, state-of-the-art methods, experimentations and analysis in using the methods discussed in theory on real-world tasks. Advanced Deep Learning Techniques for Text and Speech The third part has five chapters that discuss the latest and cutting-edge research in the areas of deep learning that intersect with NLP and speech. Topics including attention mechanisms, memory augmented networks, transfer learning, multi-task learning, domain adaptation, reinforcement learning, and end-to-end deep learning for speech recognition are covered using case studies.

Reinforcement Learning, second edition

Reinforcement Learning, second edition PDF Author: Richard S. Sutton
Publisher: MIT Press
ISBN: 0262352702
Category : Computers
Languages : en
Pages : 549

Get Book Here

Book Description
The significantly expanded and updated new edition of a widely used text on reinforcement learning, one of the most active research areas in artificial intelligence. Reinforcement learning, one of the most active research areas in artificial intelligence, is a computational approach to learning whereby an agent tries to maximize the total amount of reward it receives while interacting with a complex, uncertain environment. In Reinforcement Learning, Richard Sutton and Andrew Barto provide a clear and simple account of the field's key ideas and algorithms. This second edition has been significantly expanded and updated, presenting new topics and updating coverage of other topics. Like the first edition, this second edition focuses on core online learning algorithms, with the more mathematical material set off in shaded boxes. Part I covers as much of reinforcement learning as possible without going beyond the tabular case for which exact solutions can be found. Many algorithms presented in this part are new to the second edition, including UCB, Expected Sarsa, and Double Learning. Part II extends these ideas to function approximation, with new sections on such topics as artificial neural networks and the Fourier basis, and offers expanded treatment of off-policy learning and policy-gradient methods. Part III has new chapters on reinforcement learning's relationships to psychology and neuroscience, as well as an updated case-studies chapter including AlphaGo and AlphaGo Zero, Atari game playing, and IBM Watson's wagering strategy. The final chapter discusses the future societal impacts of reinforcement learning.

Speech & Language Processing

Speech & Language Processing PDF Author: Dan Jurafsky
Publisher: Pearson Education India
ISBN: 9788131716724
Category :
Languages : en
Pages : 912

Get Book Here

Book Description


Reinforcement Learning for Adaptive Dialogue Systems

Reinforcement Learning for Adaptive Dialogue Systems PDF Author: Verena Rieser
Publisher: Springer Science & Business Media
ISBN: 3642249426
Category : Computers
Languages : en
Pages : 261

Get Book Here

Book Description
The past decade has seen a revolution in the field of spoken dialogue systems. As in other areas of Computer Science and Artificial Intelligence, data-driven methods are now being used to drive new methodologies for system development and evaluation. This book is a unique contribution to that ongoing change. A new methodology for developing spoken dialogue systems is described in detail. The journey starts and ends with human behaviour in interaction, and explores methods for learning from the data, for building simulation environments for training and testing systems, and for evaluating the results. The detailed material covers: Spoken and Multimodal dialogue systems, Wizard-of-Oz data collection, User Simulation methods, Reinforcement Learning, and Evaluation methodologies. The book is a research guide for students and researchers with a background in Computer Science, AI, or Machine Learning. It navigates through a detailed case study in data-driven methods for development and evaluation of spoken dialogue systems. Common challenges associated with this approach are discussed and example solutions are provided. This work provides insights, lessons, and inspiration for future research and development – not only for spoken dialogue systems in particular, but for data-driven approaches to human-machine interaction in general.

Deep Learning in Natural Language Processing

Deep Learning in Natural Language Processing PDF Author: Li Deng
Publisher: Springer
ISBN: 9811052093
Category : Computers
Languages : en
Pages : 338

Get Book Here

Book Description
In recent years, deep learning has fundamentally changed the landscapes of a number of areas in artificial intelligence, including speech, vision, natural language, robotics, and game playing. In particular, the striking success of deep learning in a wide variety of natural language processing (NLP) applications has served as a benchmark for the advances in one of the most important tasks in artificial intelligence. This book reviews the state of the art of deep learning research and its successful applications to major NLP tasks, including speech recognition and understanding, dialogue systems, lexical analysis, parsing, knowledge graphs, machine translation, question answering, sentiment analysis, social computing, and natural language generation from images. Outlining and analyzing various research frontiers of NLP in the deep learning era, it features self-contained, comprehensive chapters written by leading researchers in the field. A glossary of technical terms and commonly used acronyms in the intersection of deep learning and NLP is also provided. The book appeals to advanced undergraduate and graduate students, post-doctoral researchers, lecturers and industrial researchers, as well as anyone interested in deep learning and natural language processing.

Automatic Speech Recognition

Automatic Speech Recognition PDF Author: Dong Yu
Publisher: Springer
ISBN: 1447157796
Category : Technology & Engineering
Languages : en
Pages : 329

Get Book Here

Book Description
This book provides a comprehensive overview of the recent advancement in the field of automatic speech recognition with a focus on deep learning models including deep neural networks and many of their variants. This is the first automatic speech recognition book dedicated to the deep learning approach. In addition to the rigorous mathematical treatment of the subject, the book also presents insights and theoretical foundation of a series of highly successful deep learning models.

Convergence of Deep Learning and Internet of Things: Computing and Technology

Convergence of Deep Learning and Internet of Things: Computing and Technology PDF Author: Kavitha, T.
Publisher: IGI Global
ISBN: 166846277X
Category : Computers
Languages : en
Pages : 371

Get Book Here

Book Description
Digital technology has enabled a number of internet-enabled devices that generate huge volumes of data from different systems. This large amount of heterogeneous data requires efficient data collection, processing, and analytical methods. Deep Learning is one of the latest efficient and feasible solutions that enable smart devices to function independently with a decision-making support system. Convergence of Deep Learning and Internet of Things: Computing and Technology contributes to technology and methodology perspectives in the incorporation of deep learning approaches in solving a wide range of issues in the IoT domain to identify, optimize, predict, forecast, and control emerging IoT systems. Covering topics such as data quality, edge computing, and attach detection and prediction, this premier reference source is a comprehensive resource for electricians, communications specialists, mechanical engineers, civil engineers, computer scientists, students and educators of higher education, librarians, researchers, and academicians.