Regulation of Transcriptional Elongation by RNA Polymerase II.

Regulation of Transcriptional Elongation by RNA Polymerase II. PDF Author: Krassimir Yankov Yankulov
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description

Regulation of Transcriptional Elongation by RNA Polymerase II.

Regulation of Transcriptional Elongation by RNA Polymerase II. PDF Author: Krassimir Yankov Yankulov
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description


Controlling RNA Polymerase II Transcriptional Elongation Through Positive and Negative Regulation of P-TEFb

Controlling RNA Polymerase II Transcriptional Elongation Through Positive and Negative Regulation of P-TEFb PDF Author: Zhiyuan Yang
Publisher:
ISBN:
Category :
Languages : en
Pages : 302

Get Book Here

Book Description


The Regulation of Transcription Initiation and Elongation by RNA Polymerase II.

The Regulation of Transcription Initiation and Elongation by RNA Polymerase II. PDF Author: Michael Justin Blau
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description


Molecular Mechanisms of Factors that Control RNA Polymerase II Transcription Elongation Dynamics

Molecular Mechanisms of Factors that Control RNA Polymerase II Transcription Elongation Dynamics PDF Author: Manchuta Dangkulwanich
Publisher:
ISBN:
Category :
Languages : en
Pages : 137

Get Book Here

Book Description
The expression of a gene begins by transcribing a target region on the DNA to form a molecule of messenger RNA. As transcription is the first step of gene expression, it is there- fore highly regulated. The regulation of transcription is essential in fundamental biological processes, such as cell growth, development and differentiation. The process is carried out by an enzyme, RNA polymerase, which catalyzes the addition of a nucleotide complementary to the template and moves along the DNA one base pair at a time. To complete its tasks, the enzyme functions as a complex molecular machine, possessing various evolutionarily designed parts. In eukaryotes, RNA polymerase has to transcribe through DNA wrapped around histone proteins forming nucleosomes. These structures represent physical barriers to the transcribing enzyme. In chapter 2, we investigated how each nucleosomal component--the histone tails, the specific histone-DNA contacts, and the DNA sequence--contributes to the strength of the barrier. Removal of the tails favors progression of RNA polymerase II into the entry region of the nucleosome by locally increasing the wrapping-unwrapping rates of the DNA around histones. In contrast, point mutations that affect histone-DNA contacts at the dyad abolish the barrier to transcription in the central region by decreasing the local wrapping rate. Moreover, we showed that the nucleosome amplifies sequence-dependent transcriptional pausing, an effect mediated through the structure of the nascent RNA. Each of these nucleosomal elements controls transcription elongation by distinctly affecting the density and duration of polymerase pauses, thus providing multiple and alternative mechanisms for control of gene expression by additional factors. During transcription elongation, RNA polymerase has been assumed to attain equilibrium between pre- and post-translocated states rapidly relative to the subsequent catalysis. Under this assumption, a branched Brownian ratchet mechanism that necessitates a putative secondary nucleotide binding site on the enzyme was proposed. In chapter 3, we challenged individual yeast RNA polymerase II (Pol II) with a nucleosome as a "road block", and separately measured the forward and reverse translocation rates with our single-molecule transcription elongation assay. Surprisingly, we found that the forward translocation rate is comparable to the catalysis rate. This finding reveals a linear, non-branched ratchet mech-anism for the nucleotide addition cycle in which translocation is one of the rate-limiting steps. We further determined all the major on- and off-pathway kinetic parameters in the elongation cycle. This kinetic model provides a framework to study the influence of various factors on transcription dynamics. To further dissect the operation of Pol II, we focused on the trigger loop, a mobile element near the active site of the enzyme. Biochemical and structural studies have demonstrated that the trigger loop makes direct contacts with substrates and promotes nucleotide incorporation. It is also an important regulatory element for transcription fidelity. In chapter 4, we characterized the dynamics of a trigger loop mutant RNA polymerase to elucidate the roles of this element in transcription regulation, and applied the above kinetic framework to quantify the effects of the mutation. In comparison to the wild-type enzyme, we found that the mutant is more sensitive to force, faster at substrate sequestration, and more efficient to return from a pause to active transcription. This work highlighted important roles of regulatory elements in controlling transcription dynamics and fidelity. Moreover, RNA polymerase interacts with various additional factors, which add layers of regulation on transcription. Transcription factors IIS (TFIIS) and IIF (TFIIF) are known to interact with elongating RNA polymerase directly and stimulate transcription. In chapter 5, we studied the effects of these factors on elongation dynamics using our single molecule assay. We found that both TFIIS and TFIIF enhance the overall transcription elongation by reducing the lifetime of transcriptional pauses and that TFIIF also decreases the probability of pause entry. Furthermore, we observed that both factors enhance the efficiency of nucleosomal transcription. Our findings helped elucidate the molecular mechanisms of gene expression modulation by transcription factors. In summary, we have dissected the mechanisms by which the nucleosomal elements regulate transcription, and derived a quantitative kinetic model of transcription elongation in a linear Brownian ratchet scheme with the slow translocation of the enzyme. The corresponding translocation energy landscape shows that the off-pathway states are favored thermodynamically but not kinetically over the on-pathway states. This observation confers the enzyme its high propensity to pause, thus allowing additional regulatory mechanisms during pausing. TFIIS and TFIIF, for example, regulate transcription dynamics by shortening the lifetime of Pol II pauses. On the other hand, the trigger loop of Pol II regulates both the active elongation and pausing. These examples illustrate molecular mechanisms of cis- and trans-acting factors regulate the dynamics of transcription elongation.

RNA Exosome

RNA Exosome PDF Author: Torben Heick Jensen
Publisher: Springer Science & Business Media
ISBN: 1441978410
Category : Medical
Languages : en
Pages : 161

Get Book Here

Book Description
The diversity of RNAs inside living cells is amazing. We have known of the more “classic” RNA species: mRNA, tRNA, rRNA, snRNA and snoRNA for some time now, but in a steady stream new types of molecules are being described as it is becoming clear that most of the genomic information of cells ends up in RNA. To deal with the enormous load of resulting RNA processing and degradation reactions, cells need adequate and efficient molecular machines. The RNA exosome is arising as a major facilitator to this effect. Structural and functional data gathered over the last decade have illustrated the biochemical importance of this multimeric complex and its many co-factors, revealing its enormous regulatory power. By gathering some of the most prominent researchers in the exosome field, it is the aim of this volume to introduce this fascinating protein complex as well as to give a timely and rich account of its many functions. The exosome was discovered more than a decade ago by Phil Mitchell and David Tollervey by its ability to trim the 3’end of yeast, S. cerevisiae, 5. 8S rRNA. In a historic account they laid out the events surrounding this identification and the subsequent birth of the research field. In the chapter by Kurt Januszyk and Christopher Lima the structural organization of eukaryotic exosomes and their evolutionary counterparts in bacteria and archaea are discussed in large part through presentation of structures.

Molecular Biology of B Cells

Molecular Biology of B Cells PDF Author: Tasuku Honjo
Publisher: Academic Press
ISBN: 9780123979339
Category : Science
Languages : en
Pages : 0

Get Book Here

Book Description
Molecular Biology of B Cells, Second Edition is a comprehensive reference to how B cells are generated, selected, activated and engaged in antibody production. All of these developmental and stimulatory processes are described in molecular, immunological, and genetic terms to give a clear understanding of complex phenotypes. Molecular Biology of B Cells, Second Edition offers an integrated view of all aspects of B cells to produce a normal immune response as a constant, and the molecular basis of numerous diseases due to B cell abnormality. The new edition continues its success with updated research on microRNAs in B cell development and immunity, new developments in understanding lymphoma biology, and therapeutic targeting of B cells for clinical application. With updated research and continued comprehensive coverage of all aspects of B cell biology, Molecular Biology of B Cells, Second Edition is the definitive resource, vital for researchers across molecular biology, immunology and genetics.

Gene Regulation, Epigenetics and Hormone Signaling

Gene Regulation, Epigenetics and Hormone Signaling PDF Author: Subhrangsu S. Mandal
Publisher: John Wiley & Sons
ISBN: 3527322817
Category : Science
Languages : en
Pages : 678

Get Book Here

Book Description
The first of its kind, this reference gives a comprehensive but concise introduction to epigenetics before covering the many interactions between hormone regulation and epigenetics at all levels. The contents are very well structured with no overlaps between chapters, and each one features supplementary material for use in presentations. Throughout, major emphasis is placed on pathological conditions, aiming at the many physiologists and developmental biologists who are familiar with the importance and mechanisms of hormone regulation but have a limited background in epigenetics.

Regulation of Transcriptional Elongation in Escherichia Coli

Regulation of Transcriptional Elongation in Escherichia Coli PDF Author: Rachel Anne Mooney
Publisher:
ISBN:
Category :
Languages : en
Pages : 302

Get Book Here

Book Description


Regulation of RNA Polymerase II Transcription Elongation in Schizosaccharomyces Pombe by SpELL and Associated Factor SpEAF.

Regulation of RNA Polymerase II Transcription Elongation in Schizosaccharomyces Pombe by SpELL and Associated Factor SpEAF. PDF Author: Charles Antony Scott Banks
Publisher:
ISBN:
Category : RNA polymerases
Languages : en
Pages :

Get Book Here

Book Description


Gene Regulation in Eukaryotes

Gene Regulation in Eukaryotes PDF Author: Edgar Wingender
Publisher: Wiley-Blackwell
ISBN:
Category : Science
Languages : en
Pages : 452

Get Book Here

Book Description
A much-needed guide through the overwhelming amount of literature in the field. Comprehensive and detailed, this book combines background information with the most recentinsights. It introduces current concepts, emphasizing the transcriptional control of genetic information. Moreover, it links data on the structure of regulatory proteins with basic cellular processes. Both advanced students and experts will find answers to such intriguing questions as: - How are programs of specific gene repertoires activated and controlled? - Which genes drive and control morphogenesis? - Which genes govern tissue-specific tasks? - How do hormones control gene expression in coordinating the activities of different tissues? An abundant number of clearly presented glossary terms facilitates understanding of the biological background. Speacial feature: over 2200 (!) literature references.