Regulation of Smooth Muscle Contraction

Regulation of Smooth Muscle Contraction PDF Author: Robert S. Moreland
Publisher: Springer Science & Business Media
ISBN: 146846003X
Category : Medical
Languages : en
Pages : 547

Get Book Here

Book Description
Sixth Annual Graduate Hospital Research Symposium REGULATION OF SMOOTH MUSCLE PROGRESS IN SOLVING THE PUZZLE Every so often a scientific conference comes at a time when everyone has new and exciting information, when old "dogmas" do not seem to be as well established, and when speakers and participants alike are ready to challenge interpretations of old and new experimental data. This was such a conference. What turns on a smooth muscle cell? The precise answer to this question has eluded scientists for much longer than I have been involved in the field. We know that an increase in cytosolic calcium is necessary and we know that phosphorylation of the 20 kDa myosin light chain is an important step in the process. We do not know if other processes are necessary for the initiation and lor maintenance of a smooth muscle contraction nor do we know if other processes modulate the regulation of contraction. The goal of the symposium on which this volume is based was to explore the most current hypotheses for the answers to these questions. I believe that after reading the chapters included in this volume, you will agree that this goal was achieved. The importance of calcium and calmodulin dependent myosin light chain phosphoryla tion in the regulation of smooth muscle contraction was reinforced by many presentations. However, the status of myosin light chain phosphorylation as a simple calcium dependent switch came under serious suspicion.

Regulation of Smooth Muscle Contraction

Regulation of Smooth Muscle Contraction PDF Author: Robert S. Moreland
Publisher: Springer Science & Business Media
ISBN: 146846003X
Category : Medical
Languages : en
Pages : 547

Get Book Here

Book Description
Sixth Annual Graduate Hospital Research Symposium REGULATION OF SMOOTH MUSCLE PROGRESS IN SOLVING THE PUZZLE Every so often a scientific conference comes at a time when everyone has new and exciting information, when old "dogmas" do not seem to be as well established, and when speakers and participants alike are ready to challenge interpretations of old and new experimental data. This was such a conference. What turns on a smooth muscle cell? The precise answer to this question has eluded scientists for much longer than I have been involved in the field. We know that an increase in cytosolic calcium is necessary and we know that phosphorylation of the 20 kDa myosin light chain is an important step in the process. We do not know if other processes are necessary for the initiation and lor maintenance of a smooth muscle contraction nor do we know if other processes modulate the regulation of contraction. The goal of the symposium on which this volume is based was to explore the most current hypotheses for the answers to these questions. I believe that after reading the chapters included in this volume, you will agree that this goal was achieved. The importance of calcium and calmodulin dependent myosin light chain phosphoryla tion in the regulation of smooth muscle contraction was reinforced by many presentations. However, the status of myosin light chain phosphorylation as a simple calcium dependent switch came under serious suspicion.

Biochemistry of Smooth Muscle Contraction

Biochemistry of Smooth Muscle Contraction PDF Author: Michael Barany
Publisher: Elsevier
ISBN: 0080527892
Category : Science
Languages : en
Pages : 455

Get Book Here

Book Description
This valuable resource provides a systematic account of the biochemistry of smooth muscle contraction. As a comprehensive guide to this rapidly growing area of research, it covers the structure and characteristic properties of contractile and regulatory proteins, with special emphasis on their predicted function in the live muscle. Also included in this book are intermediate filament proteins, and desmin and vimentin, whose function in smooth muscle is unknown; and several enzymes involved in the phosphorylation-dephosphorylation of contractile and other proteins.

Anatomy and Physiology

Anatomy and Physiology PDF Author: J. Gordon Betts
Publisher:
ISBN: 9781947172807
Category :
Languages : en
Pages : 0

Get Book Here

Book Description


Mechanisms of Vascular Disease

Mechanisms of Vascular Disease PDF Author: Robert Fitridge
Publisher: University of Adelaide Press
ISBN: 1922064009
Category : Medical
Languages : en
Pages : 589

Get Book Here

Book Description
New updated edition first published with Cambridge University Press. This new edition includes 29 chapters on topics as diverse as pathophysiology of atherosclerosis, vascular haemodynamics, haemostasis, thrombophilia and post-amputation pain syndromes.

Colonic Motility

Colonic Motility PDF Author: Sushil K. Sarna
Publisher: Biota Publishing
ISBN: 1615041516
Category : Medical
Languages : en
Pages : 159

Get Book Here

Book Description
Three distinct types of contractions perform colonic motility functions. Rhythmic phasic contractions (RPCs) cause slow net distal propulsion with extensive mixing/turning over. Infrequently occurring giant migrating contractions (GMCs) produce mass movements. Tonic contractions aid RPCs in their motor function. The spatiotemporal patterns of these contractions differ markedly. The amplitude and distance of propagation of a GMC are several-fold larger than those of an RPC. The enteric neurons and smooth muscle cells are the core regulators of all three types of contractions. The regulation of contractions by these mechanisms is modifiable by extrinsic factors: CNS, autonomic neurons, hormones, inflammatory mediators, and stress mediators. Only the GMCs produce descending inhibition, which accommodates the large bolus being propelled without increasing muscle tone. The strong compression of the colon wall generates afferent signals that are below nociceptive threshold in healthy subjects. However, these signals become nociceptive; if the amplitudes of GMCs increase, afferent nerves become hypersensitive, or descending inhibition is impaired. The GMCs also provide the force for rapid propulsion of feces and descending inhibition to relax the internal anal sphincter during defecation. The dysregulation of GMCs is a major factor in colonic motility disorders: irritable bowel syndrome (IBS), inflammatory bowel disease (IBD), and diverticular disease (DD). Frequent mass movements by GMCs cause diarrhea in diarrhea predominant IBS, IBD, and DD, while a decrease in the frequency of GMCs causes constipation. The GMCs generate the afferent signals for intermittent short-lived episodes of abdominal cramping in these disorders. Epigenetic dysregulation due to adverse events in early life is one of the major factors in generating the symptoms of IBS in adulthood.

Excitation-Contraction Coupling and Cardiac Contractile Force

Excitation-Contraction Coupling and Cardiac Contractile Force PDF Author: Donald Bers
Publisher: Springer Science & Business Media
ISBN: 940100658X
Category : Medical
Languages : en
Pages : 468

Get Book Here

Book Description
How is the heartbeat generated? What controls the strength of contraction of heart muscle? What are the links between cardiac structure and function? How does our understanding of skeletal and smooth muscle and non-muscle cells influence our thinking about force development in the heart? Are there important species differences in how contraction is regulated in the heart? How do the new molecular data fit together in understanding the heart beat? What goes wrong in ischemia, hypertrophy, and heart failure? This book paints a modern `portrait' of how the heart works and in this picture the author shows a close-up of the structural, biochemical, and physiological links between excitation and contraction. The author takes the reader through a series of important, interrelated topics with great clarity and continuity and also includes many useful illustrations and tables. The book starts by considering the cellular structures involved in excitation-contraction coupling and then described the characteristics of the myofilaments as the end effector of excitation-contraction coupling. A general scheme of calcium regulation is described and the possible sources and sinks of calcium are discussed in simple, but quantitative terms. The cardiac action potential and its many underlying currents are reviewed. Then the characteristics of some key calcium transport systems (calcium channels, sodium/calcium exchange and SR calcium uptake and release) are discussed in detail. This is then built into a more integrated picture of calcium regulation in succeeding chapters by detailed discussions of excitation-calcium coupling mechanisms (in skeletal, cardiac, and smooth muscle), the interplay between calcium regulatory processes, and finally mechanisms of cardiac inotropy, calcium overload, and dysfunction (e.g., ischemia, hypertrophy, and heart failure). Excitation-Contraction Coupling and Cardiac Contractile Force – Second Edition is an invaluable source of information for anyone who is interested in how the heart beat is controlled and especially suited for students of the cardiovascular system at all levels from medical/graduate students through senior investigators in related fields.

Anatomy & Physiology

Anatomy & Physiology PDF Author: Lindsay Biga
Publisher:
ISBN: 9781955101158
Category :
Languages : en
Pages :

Get Book Here

Book Description
A version of the OpenStax text

Vascular Pharmacology: Cytoskeleton and Extracellular Matrix

Vascular Pharmacology: Cytoskeleton and Extracellular Matrix PDF Author:
Publisher: Academic Press
ISBN: 0128121521
Category : Medical
Languages : en
Pages : 406

Get Book Here

Book Description
Vascular Pharmacology: Cytoskeleton and Extracellular Matrix, Volume 81, contains the latest information on the vascular cytoskeleton and extracellular matrix that is presented with helpful illustrations and supporting references by prominent scientists and highly-recognized experts in the vascular field. Topics of interest in this new release include Pharmacology of the Vascular Cytoskeleton and Extracellular Matrix, The Dynamic Actin Cytoskeleton in Smooth Muscle, The Role of the Actin Cytoskeleton in the Regulation of Vascular Inflammation, The Smoothelin Family of Proteins and the Smooth Muscle Cell Contractile Apparatus, Smooth Muscle Cytoskeletal Network Regulates Expression of the Profibrotic Genes PAI-1 and CTGF, and more. - Presents a must-read book on the vascular cytoskeleton and extracellular matrix - Contains up-to-date information on the structure, function and development of the vascular cell cytoskeleton - Includes contributors from prominent scientists and highly-recognized experts with major accomplishments in the fields of the vascular cytoskeleton, extracellular matrix, mechanotransduction and vascular remodeling

Regulation and Contraction of Smooth Muscle

Regulation and Contraction of Smooth Muscle PDF Author: International Union of Physiological Sciences. Satellite Conference on Smooth Muscle Contraction
Publisher: New York : Liss
ISBN:
Category : Nature
Languages : en
Pages : 544

Get Book Here

Book Description


An Introduction to Smooth Muscle Mechanics (2nd Edition)

An Introduction to Smooth Muscle Mechanics (2nd Edition) PDF Author: Chun Y. Seow
Publisher: Cambridge Scholars Publishing
ISBN: 152756228X
Category : Medical
Languages : en
Pages : 189

Get Book Here

Book Description
This second edition is an updated version of an introductory level textbook intended for students who are interested in understanding the mechanical properties of smooth muscle. Compared with skeletal and cardiac muscles, smooth muscle is the least understood in terms of its contraction mechanism and the structure of its contractile apparatus. Nevertheless, it is an important tissue that is vital in many organ functions, such as blood pressure control, intestinal peristalsis, and the emptying of the bladder. Dysfunction of the muscle has been implicated in many diseases such as high blood pressure, asthma, and overactive bladders. This is the only book-length treatment of functional models of a variety of smooth muscle behaviors with their corresponding mathematical descriptions, and offers an easy-to-follow, step-by-step mathematical derivation that will help students to appreciate the muscle cell as a fine-tuned aggregate of mechanisms governed by the fundamental laws of physics. In addition to providing a detailed description of the known subcellular structure and mechanical function of the contractile apparatus of smooth muscle, it also covers experimentation techniques, instrumentation, and data analysis. The book is a must-have information source for anyone interested in smooth muscle cell ultrastructure, physiology, biochemistry, and pharmacology.