Reduced Modelling of Planar Fuel Cells

Reduced Modelling of Planar Fuel Cells PDF Author: Zhongjie He
Publisher: Springer
ISBN: 331942646X
Category : Technology & Engineering
Languages : en
Pages : 306

Get Book Here

Book Description
This book focuses on novel reduced cell and stack models for proton exchange membrane fuel cells (PEMFCs) and planar solid oxide fuel cells (P-SOFCs) that serve to reduce the computational cost by two orders of magnitude or more with desired numerical accuracy, while capturing both the average properties and the variability of the dependent variables in the 3D counterparts. The information provided can also be applied to other kinds of plate-type fuel cells whose flow fields consist of parallel plain channels separated by solid ribs. These fast and efficient models allow statistical sensitivity analysis for a sample size in the order of 1000 without prohibitive computational cost to be performed to investigate not only the individual, but also the simultaneous effects of a group of varying geometrical, material, and operational parameters. This provides important information for cell/stack design, and to illustrate this, Monte Carlo simulation of the reduced P-SOFC model is conducted at both the single-cell and stack levels.

Reduced Modelling of Planar Fuel Cells

Reduced Modelling of Planar Fuel Cells PDF Author: Zhongjie He
Publisher: Springer
ISBN: 331942646X
Category : Technology & Engineering
Languages : en
Pages : 306

Get Book Here

Book Description
This book focuses on novel reduced cell and stack models for proton exchange membrane fuel cells (PEMFCs) and planar solid oxide fuel cells (P-SOFCs) that serve to reduce the computational cost by two orders of magnitude or more with desired numerical accuracy, while capturing both the average properties and the variability of the dependent variables in the 3D counterparts. The information provided can also be applied to other kinds of plate-type fuel cells whose flow fields consist of parallel plain channels separated by solid ribs. These fast and efficient models allow statistical sensitivity analysis for a sample size in the order of 1000 without prohibitive computational cost to be performed to investigate not only the individual, but also the simultaneous effects of a group of varying geometrical, material, and operational parameters. This provides important information for cell/stack design, and to illustrate this, Monte Carlo simulation of the reduced P-SOFC model is conducted at both the single-cell and stack levels.

Fuel Cell Engineering

Fuel Cell Engineering PDF Author:
Publisher: Academic Press
ISBN: 0123868750
Category : Technology & Engineering
Languages : en
Pages : 481

Get Book Here

Book Description
Fuel cells are attractive electrochemical energy converters featuring potentially very high thermodynamic efficiency factors. The focus of this volume of Advances in Chemical Engineering is on quantitative approaches, particularly based on chemical engineering principles, to analyze, control and optimize the steady state and dynamic behavior of low and high temperature fuel cells (PEMFC, DMFC, SOFC) to be applied in mobile and stationary systems. - Updates and informs the reader on the latest research findings using original reviews - Written by leading industry experts and scholars - Reviews and analyzes developments in the field

Analytical Modelling of Fuel Cells

Analytical Modelling of Fuel Cells PDF Author: Andrei A. Kulikovsky
Publisher: Elsevier
ISBN: 0444642226
Category : Science
Languages : en
Pages : 382

Get Book Here

Book Description
Analytical Modelling of Fuel Cells, Second Edition, is devoted to the analytical models that help us understand the mechanisms of cell operation. The book contains equations for the rapid evaluation of various aspects of fuel cell performance, including cell potential, rate of electrochemical reactions, rate of transport processes in the cell, and temperature fields in the cell, etc. Furthermore, the book discusses how to develop simple physics-based analytical models. A new chapter is devoted to analytical models of PEM fuel cell impedance, a technique that exhibits explosive growth potential. Finally, the book contains Maple worksheets implementing some of the models discussed.

Solid Oxide Fuel Cells

Solid Oxide Fuel Cells PDF Author: Meng Ni
Publisher: Royal Society of Chemistry
ISBN: 1849737770
Category : Science
Languages : en
Pages : 539

Get Book Here

Book Description
Solid oxide fuel cells (SOFCs) are promising electrochemical power generation devices that can convert chemical energy of a fuel into electricity in an efficient, environmental-friendly, and quiet manner. Due to their high operating temperature, SOFCs feature fuel flexibility as internal reforming of hydrocarbon fuels and ammonia thermal cracking can be realized in SOFC anode. This book presents an overview of the SOFC technology with a focus on the recent developments in new technologies and new ideas for addressing the key issues of SOFC development. This book first introduces the fundamental principles of SOFCs and compares SOFC technology with conventional heat engines as well as low temperature fuel cells. Then the latest developments in SOFC R&D are reviewed and future directions are discussed. Key issues related to SOFC performance improvement, long-term stability, mathematical modelling, as well as system integration/control are addressed, including material development, infiltration technique for nano-structured electrode fabrication, focused ion beam – scanning electron microscopy (FIB-SEM) technique for microstructure reconstruction, the Lattice Boltzmann Method (LBM) simulation at pore scale, multi-scale modelling, SOFC integration with buildings and other cycles for stationary applications.

Fuel Cell Fundamentals

Fuel Cell Fundamentals PDF Author: Ryan O'Hayre
Publisher: John Wiley & Sons
ISBN: 1119113806
Category : Science
Languages : en
Pages : 612

Get Book Here

Book Description
A complete, up-to-date, introductory guide to fuel cell technology and application Fuel Cell Fundamentals provides a thorough introduction to the principles and practicalities behind fuel cell technology. Beginning with the underlying concepts, the discussion explores fuel cell thermodynamics, kinetics, transport, and modeling before moving into the application side with guidance on system types and design, performance, costs, and environmental impact. This new third edition has been updated with the latest technological advances and relevant calculations, and enhanced chapters on advanced fuel cell design and electrochemical and hydrogen energy systems. Worked problems, illustrations, and application examples throughout lend a real-world perspective, and end-of chapter review questions and mathematical problems reinforce the material learned. Fuel cells produce more electricity than batteries or combustion engines, with far fewer emissions. This book is the essential introduction to the technology that makes this possible, and the physical processes behind this cost-saving and environmentally friendly energy source. Understand the basic principles of fuel cell physics Compare the applications, performance, and costs of different systems Master the calculations associated with the latest fuel cell technology Learn the considerations involved in system selection and design As more and more nations turn to fuel cell commercialization amidst advancing technology and dropping deployment costs, global stationary fuel cell revenue is expected to grow from $1.4 billion to $40.0 billion by 2022. The sector is forecasted to explode, and there will be a tremendous demand for high-level qualified workers with advanced skills and knowledge of fuel cell technology. Fuel Cell Fundamentals is the essential first step toward joining the new energy revolution.

Intermediate Temperature Solid Oxide Fuel Cells

Intermediate Temperature Solid Oxide Fuel Cells PDF Author: Gurbinder Kaur
Publisher: Elsevier
ISBN: 0128174463
Category : Technology & Engineering
Languages : en
Pages : 516

Get Book Here

Book Description
Intermediate Temperature Solid Oxide Fuel Cells: Electrolytes, Electrodes and Interconnects introduces the fundamental principles of intermediate solid oxide fuel cells technology. It provides the reader with a broad understanding and practical knowledge of the electrodes, pyrochlore/perovskite/oxide electrolytes and interconnects which form the backbone of the Solid Oxide Fuel Cell (SOFC) unit. Opening with an introduction to the thermodynamics, physiochemical and electrochemical behavior of Solid Oxide Fuel Cells (SOFC), the book also discusses specific materials, including low temperature brownmillerites and aurivillius electrolytes, as well as pyrochlore interconnects. This book analyzes the basic concepts, providing cutting-edge information for both researchers and students. It is a complete reference for Intermediate Solid Oxide Fuel Cells technology that will be a vital resource for those working in materials science, fuel cells and solid state chemistry. - Provides a single source of information on glass, electrolytes, interconnects, vanadates, pyrochlores and perovskite SOFC - Includes illustrations that provide a clear visual explanation of concepts being discussed - Progresses from a discussion of basic concepts that will enable readers to easily comprehend the subject matter

High-temperature Solid Oxide Fuel Cells: Fundamentals, Design and Applications

High-temperature Solid Oxide Fuel Cells: Fundamentals, Design and Applications PDF Author: S.C. Singhal
Publisher: Elsevier
ISBN: 0080508081
Category : Technology & Engineering
Languages : en
Pages : 423

Get Book Here

Book Description
High Temperature Solid Oxide Fuel Cells: Fundamentals, Design and Applications provides a comprehensive discussion of solid oxide fuel cells (SOFCs). SOFCs are the most efficient devices for the electrochemical conversion of chemical energy of hydrocarbon fuels into electricity, and have been gaining increasing attention for clean and efficient distributed power generation. The book explains the operating principle, cell component materials, cell and stack designs and fabrication processes, cell and stack performance, and applications of SOFCs. Individual chapters are written by internationally renowned authors in their respective fields, and the text is supplemented by a large number of references for further information. The book is primarily intended for use by researchers, engineers, and other technical people working in the field of SOFCs. Even though the technology is advancing at a very rapid pace, the information contained in most of the chapters is fundamental enough for the book to be useful even as a text for SOFC technology at the graduate level.

Models for Solid Oxide Fuel Cell Systems

Models for Solid Oxide Fuel Cell Systems PDF Author: Dario Marra
Publisher: Springer
ISBN: 1447156587
Category : Technology & Engineering
Languages : en
Pages : 174

Get Book Here

Book Description
This book presents methodologies suitable for the optimal design of control and diagnosis strategies for Solid Oxide Fuel Cell (SOFC) systems. One key feature of the methodologies presented is the use of modeling tools with an ideal balance between accuracy and computational burden. Particular emphasis is given to the useful combination of models within a hierarchical framework to reduce the experimental efforts required for characterization and testing. Such tools are proven to be highly effective for SOFC systems destined for both residential and transportation applications. Throughout the book, optimization is always conceived in such a way so as to allow the SOFC systems to work efficiently while guaranteeing safe thermal operation, as well as an extended lifetime. This book is aimed at scientists and engineers involved in the design of marketable SOFC systems. It gathers the knowledge and experience derived from other research and industry practice for which control and diagnosis have proven to be the main keys to success and market penetration.

Water and Thermal Management of Proton Exchange Membrane Fuel Cells

Water and Thermal Management of Proton Exchange Membrane Fuel Cells PDF Author: Kui Jiao
Publisher: Elsevier
ISBN: 032391117X
Category : Technology & Engineering
Languages : en
Pages : 402

Get Book Here

Book Description
Water and Thermal Management of Proton Exchange Membrane Fuel Cells introduces the main research methods and latest advances in the water and thermal management of PEMFCs. The book introduces the transport mechanism of each component, including modeling methods at different scales, along with practical exercises. Topics include PEMFC fundamentals, working principles and transport mechanisms, characterization tests and diagnostic analysis, the simulation of multiphase transport and electrode kinetics, cell-scale modeling, stack-scale modeling, and system-scale modeling. This volume offers a practical handbook for researchers, students and engineers in the fields of proton exchange membrane fuel cells. Proton exchange membrane fuel cells (PEMFCs) are high-efficiency and low-emission electrochemical energy conversion devices. Inside the PEMFC complex, physical and chemical processes take place, such as electrochemical reaction, multiphase flow and heat transfer. This book explores these topics, and more. - Introduces the transport mechanism for each component of PEMFCs - Presents modeling methods at different scales, including component, cell, stack and system scales - Provides exercises in PEMFC modeling, along with examples of necessary codes - Covers the latest advances in PEMFCs in a convenient and structured manner - Offers a solution to researchers, students and engineers working on proton exchange membrane fuel cells

Advanced Methods of Solid Oxide Fuel Cell Modeling

Advanced Methods of Solid Oxide Fuel Cell Modeling PDF Author: Jarosław Milewski
Publisher: Springer Science & Business Media
ISBN: 0857292625
Category : Mathematics
Languages : en
Pages : 228

Get Book Here

Book Description
Fuel cells are widely regarded as the future of the power and transportation industries. Intensive research in this area now requires new methods of fuel cell operation modeling and cell design. Typical mathematical models are based on the physical process description of fuel cells and require a detailed knowledge of the microscopic properties that govern both chemical and electrochemical reactions. Advanced Methods of Solid Oxide Fuel Cell Modeling proposes the alternative methodology of generalized artificial neural networks (ANN) solid oxide fuel cell (SOFC) modeling. Advanced Methods of Solid Oxide Fuel Cell Modeling provides a comprehensive description of modern fuel cell theory and a guide to the mathematical modeling of SOFCs, with particular emphasis on the use of ANNs. Up to now, most of the equations involved in SOFC models have required the addition of numerous factors that are difficult to determine. The artificial neural network (ANN) can be applied to simulate an object’s behavior without an algorithmic solution, merely by utilizing available experimental data. The ANN methodology discussed in Advanced Methods of Solid Oxide Fuel Cell Modeling can be used by both researchers and professionals to optimize SOFC design. Readers will have access to detailed material on universal fuel cell modeling and design process optimization, and will also be able to discover comprehensive information on fuel cells and artificial intelligence theory.