Recursive Aspects of Descriptive Set Theory

Recursive Aspects of Descriptive Set Theory PDF Author: Richard Mansfield
Publisher: Oxford University Press, USA
ISBN:
Category : Mathematics
Languages : en
Pages : 168

Get Book Here

Book Description
Explores the nature of infinity with a view toward classifying and explaining its mathematical applications. It presents not only the basics of the classical theory, but also an introduction to the many important recent results and methods.

Recursive Aspects of Descriptive Set Theory

Recursive Aspects of Descriptive Set Theory PDF Author: Richard Mansfield
Publisher: Oxford University Press, USA
ISBN:
Category : Mathematics
Languages : en
Pages : 168

Get Book Here

Book Description
Explores the nature of infinity with a view toward classifying and explaining its mathematical applications. It presents not only the basics of the classical theory, but also an introduction to the many important recent results and methods.

Classical Descriptive Set Theory

Classical Descriptive Set Theory PDF Author: Alexander Kechris
Publisher: Springer Science & Business Media
ISBN: 1461241901
Category : Mathematics
Languages : en
Pages : 419

Get Book Here

Book Description
Descriptive set theory has been one of the main areas of research in set theory for almost a century. This text presents a largely balanced approach to the subject, which combines many elements of the different traditions. It includes a wide variety of examples, more than 400 exercises, and applications, in order to illustrate the general concepts and results of the theory.

Invariant Descriptive Set Theory

Invariant Descriptive Set Theory PDF Author: Su Gao
Publisher: CRC Press
ISBN: 158488794X
Category : Mathematics
Languages : en
Pages : 399

Get Book Here

Book Description
Presents Results from a Very Active Area of ResearchExploring an active area of mathematics that studies the complexity of equivalence relations and classification problems, Invariant Descriptive Set Theory presents an introduction to the basic concepts, methods, and results of this theory. It brings together techniques from various areas of mathem

The Descriptive Set Theory of Polish Group Actions

The Descriptive Set Theory of Polish Group Actions PDF Author: Howard Becker
Publisher: Cambridge University Press
ISBN: 0521576059
Category : Mathematics
Languages : en
Pages : 152

Get Book Here

Book Description
In this book the authors present their research into the foundations of the theory of Polish groups and the associated orbit equivalence relations. The particular case of locally compact groups has long been studied in many areas of mathematics. Non-locally compact Polish groups occur naturally as groups of symmetries in such areas as logic (especially model theory), ergodic theory, group representations, and operator algebras. Some of the topics covered here are: topological realizations of Borel measurable actions; universal actions; applications to invariant measures; actions of the infinite symmetric group in connection with model theory (logic actions); dichotomies for orbit spaces (including Silver, Glimm-Effros type dichotomies and the topological Vaught conjecture); descriptive complexity of orbit equivalence relations; definable cardinality of orbit spaces.

Descriptive Set Theory

Descriptive Set Theory PDF Author: Yiannis N. Moschovakis
Publisher: American Mathematical Society
ISBN: 1470479877
Category : Mathematics
Languages : en
Pages : 518

Get Book Here

Book Description
Descriptive Set Theory is the study of sets in separable, complete metric spaces that can be defined (or constructed), and so can be expected to have special properties not enjoyed by arbitrary pointsets. This subject was started by the French analysts at the turn of the 20th century, most prominently Lebesgue, and, initially, was concerned primarily with establishing regularity properties of Borel and Lebesgue measurable functions, and analytic, coanalytic, and projective sets. Its rapid development came to a halt in the late 1930s, primarily because it bumped against problems which were independent of classical axiomatic set theory. The field became very active again in the 1960s, with the introduction of strong set-theoretic hypotheses and methods from logic (especially recursion theory), which revolutionized it. This monograph develops Descriptive Set Theory systematically, from its classical roots to the modern ?effective? theory and the consequences of strong (especially determinacy) hypotheses. The book emphasizes the foundations of the subject, and it sets the stage for the dramatic results (established since the 1980s) relating large cardinals and determinacy or allowing applications of Descriptive Set Theory to classical mathematics. The book includes all the necessary background from (advanced) set theory, logic and recursion theory.

Descriptive Set Theory and Forcing

Descriptive Set Theory and Forcing PDF Author: Arnold W. Miller
Publisher: Cambridge University Press
ISBN: 1107168066
Category : Mathematics
Languages : en
Pages : 135

Get Book Here

Book Description
These notes develop the theory of descriptive sets, leading up to a new proof of Louveau's separation theorem for analytic sets. A first course in mathematical logic and set theory is assumed, making this book suitable for advanced students and researchers.

Generalized Descriptive Set Theory and Classification Theory

Generalized Descriptive Set Theory and Classification Theory PDF Author: Sy-David Friedman
Publisher: American Mathematical Soc.
ISBN: 0821894757
Category : Mathematics
Languages : en
Pages : 92

Get Book Here

Book Description
Descriptive set theory is mainly concerned with studying subsets of the space of all countable binary sequences. In this paper the authors study the generalization where countable is replaced by uncountable. They explore properties of generalized Baire and Cantor spaces, equivalence relations and their Borel reducibility. The study shows that the descriptive set theory looks very different in this generalized setting compared to the classical, countable case. They also draw the connection between the stability theoretic complexity of first-order theories and the descriptive set theoretic complexity of their isomorphism relations. The authors' results suggest that Borel reducibility on uncountable structures is a model theoretically natural way to compare the complexity of isomorphism relations.

Set Theory for the Working Mathematician

Set Theory for the Working Mathematician PDF Author: Krzysztof Ciesielski
Publisher: Cambridge University Press
ISBN: 9780521594653
Category : Mathematics
Languages : en
Pages : 256

Get Book Here

Book Description
Presents those methods of modern set theory most applicable to other areas of pure mathematics.

A Course on Borel Sets

A Course on Borel Sets PDF Author: S.M. Srivastava
Publisher: Springer
ISBN: 3642854737
Category : Mathematics
Languages : en
Pages : 271

Get Book Here

Book Description
The roots of Borel sets go back to the work of Baire [8]. He was trying to come to grips with the abstract notion of a function introduced by Dirich let and Riemann. According to them, a function was to be an arbitrary correspondence between objects without giving any method or procedure by which the correspondence could be established. Since all the specific functions that one studied were determined by simple analytic expressions, Baire delineated those functions that can be constructed starting from con tinuous functions and iterating the operation 0/ pointwise limit on a se quence 0/ functions. These functions are now known as Baire functions. Lebesgue [65] and Borel [19] continued this work. In [19], Borel sets were defined for the first time. In his paper, Lebesgue made a systematic study of Baire functions and introduced many tools and techniques that are used even today. Among other results, he showed that Borel functions coincide with Baire functions. The study of Borel sets got an impetus from an error in Lebesgue's paper, which was spotted by Souslin. Lebesgue was trying to prove the following: Suppose / : )R2 -- R is a Baire function such that for every x, the equation /(x,y) = 0 has a. unique solution. Then y as a function 0/ x defined by the above equation is Baire.

Cantorian Set Theory and Limitation of Size

Cantorian Set Theory and Limitation of Size PDF Author: Michael Hallett
Publisher: Oxford University Press
ISBN: 9780198532835
Category : Mathematics
Languages : en
Pages : 372

Get Book Here

Book Description
This volume presents the philosophical and heuristic framework Cantor developed and explores its lasting effect on modern mathematics. "Establishes a new plateau for historical comprehension of Cantor's monumental contribution to mathematics." --The American Mathematical Monthly