Author:
Publisher: DIANE Publishing
ISBN: 1428917594
Category :
Languages : en
Pages : 451
Book Description
Fuel Cell Handbook (Sixth Edition)
Author:
Publisher: DIANE Publishing
ISBN: 1428917594
Category :
Languages : en
Pages : 451
Book Description
Publisher: DIANE Publishing
ISBN: 1428917594
Category :
Languages : en
Pages : 451
Book Description
Hydrogen Energy and Vehicle Systems
Author: Scott E. Grasman
Publisher: CRC Press
ISBN: 143982682X
Category : Science
Languages : en
Pages : 353
Book Description
With contributions from noted laboratory scientists, professors, and engineers, Hydrogen Energy and Vehicle Systems presents a new comprehensive approach for applying hydrogen-based technologies to the transportation and electric power generation sectors. It shows how these technologies can improve the efficiency and reliability of energy and trans
Publisher: CRC Press
ISBN: 143982682X
Category : Science
Languages : en
Pages : 353
Book Description
With contributions from noted laboratory scientists, professors, and engineers, Hydrogen Energy and Vehicle Systems presents a new comprehensive approach for applying hydrogen-based technologies to the transportation and electric power generation sectors. It shows how these technologies can improve the efficiency and reliability of energy and trans
Risk-based Regulatory Design for the Safe Use of Hydrogen
Author: OECD
Publisher: OECD Publishing
ISBN: 9264628800
Category :
Languages : en
Pages : 432
Book Description
Low-emission hydrogen is expected to play an important role in the energy transition to tackle the climate crisis. It can decarbonate “hard-to-abate” sectors still relying on fossil fuels, turn low-carbon electricity into a fuel that can be transported using pipelines and provide a green transport alternative, in particular for heavy-duty and long-distance transport.
Publisher: OECD Publishing
ISBN: 9264628800
Category :
Languages : en
Pages : 432
Book Description
Low-emission hydrogen is expected to play an important role in the energy transition to tackle the climate crisis. It can decarbonate “hard-to-abate” sectors still relying on fossil fuels, turn low-carbon electricity into a fuel that can be transported using pipelines and provide a green transport alternative, in particular for heavy-duty and long-distance transport.
Hydrogen Electrical Vehicles
Author: Mehmet Sankir
Publisher: John Wiley & Sons
ISBN: 1394166389
Category : Science
Languages : en
Pages : 276
Book Description
HYDROGEN ELECTRICAL VEHICLES Hydrogen electrical vehicles are an essential component of the “Green New Deal” and this book covers cutting-edge technologies designed for fuel-cell-powered cars. The realization of the decision of 28 countries to keep global warming at 2 degrees and below, which is stated in the Paris Agreement, and the achievement of minimizing CO2 emissions, can only be accomplished by establishing a hydrogen ecosystem. A new geopolitical order is envisaged, in which sectors dealing with energy production, distribution, and storage, thus decreasing the carbon footprint, are reconstructed. In short, an economic order with new tax regulations is being created in which the carbon footprint will be followed. This global effort called the “Green Deal” is defined as a new growth strategy aiming at net-zero CO2 emissions. We know that the total share of transportation in CO2 emissions is about 24%. Therefore, efforts for reducing emissions must include utilizing hydrogen in transport. The subjects covered in the book include: An introduction to hydrogen and electrical vehicles; Hydrogen storage and compression systems; Hydrogen propulsion systems for UAVs; Test and evaluation of hydrogen fuel cell vehicles; Hydrogen production and PEM fuel cells for electrical vehicles; The power and durability issues of fuel cell vehicles. Audience The book will attract readers from diverse fields such as chemistry, physics, materials science, engineering, mechanical and chemical engineering, as well as energy-focused engineering and hydrogen generation industry programs that will take advantage of using this comprehensive review of the hydrogen electrical vehicles.
Publisher: John Wiley & Sons
ISBN: 1394166389
Category : Science
Languages : en
Pages : 276
Book Description
HYDROGEN ELECTRICAL VEHICLES Hydrogen electrical vehicles are an essential component of the “Green New Deal” and this book covers cutting-edge technologies designed for fuel-cell-powered cars. The realization of the decision of 28 countries to keep global warming at 2 degrees and below, which is stated in the Paris Agreement, and the achievement of minimizing CO2 emissions, can only be accomplished by establishing a hydrogen ecosystem. A new geopolitical order is envisaged, in which sectors dealing with energy production, distribution, and storage, thus decreasing the carbon footprint, are reconstructed. In short, an economic order with new tax regulations is being created in which the carbon footprint will be followed. This global effort called the “Green Deal” is defined as a new growth strategy aiming at net-zero CO2 emissions. We know that the total share of transportation in CO2 emissions is about 24%. Therefore, efforts for reducing emissions must include utilizing hydrogen in transport. The subjects covered in the book include: An introduction to hydrogen and electrical vehicles; Hydrogen storage and compression systems; Hydrogen propulsion systems for UAVs; Test and evaluation of hydrogen fuel cell vehicles; Hydrogen production and PEM fuel cells for electrical vehicles; The power and durability issues of fuel cell vehicles. Audience The book will attract readers from diverse fields such as chemistry, physics, materials science, engineering, mechanical and chemical engineering, as well as energy-focused engineering and hydrogen generation industry programs that will take advantage of using this comprehensive review of the hydrogen electrical vehicles.
Unsettled Issues Concerning the Use of Fuel Cells in Electric Ground Vehicles
Author: Bart Kolodziejczyk
Publisher: SAE International
ISBN: 1468601016
Category : Technology & Engineering
Languages : en
Pages : 32
Book Description
Hydrogen fuel is rapidly emerging as a clean energy carrier solution that has the potential to decarbonize a variety of industries, including, or predominantly, the transportation industry. Fuel cell electric vehicles (FCEVs), which electrochemically combine stored hydrogen with atmospheric oxygen to efficiently generate electricity while producing only water vapor and small amounts of heat, are heralded to be a game-changing technology. The so-called hydrogen economy has the potential to displace traditional fossil fuel-based economy, with the transportation industry being the first mover in the hydrogen space. Technological advances made in the last decade in the areas of hydrogen generation and fuel cell technology have enabled the current uptake of hydrogen-based solutions for vehicle applications. Reduced costs, climate change, and carbon tax mechanisms are driving many governments, manufacturers, and consumers toward hydrogen-powered vehicles. The major drawbacks of hydrogen compared to the other competing clean-energy technologies (e.g., battery power), is the high cost of hydrogen refueling and FCEVs. However, application of the economy of scale will enable further cost reduction and broad international uptake of hydrogen in automotive applications. This SAE EDGE™ Research Report explores the opportunities and challenges of hydrogen and fuel cell systems in the automotive industry. With the help of expert contributors, several different technological, economic, and safety aspects are considered to develop a better understanding of this emerging hydrogen-based automotive industry. While debates between proponents of battery electric vehicles (BEVs) and FCEVs continue, the current report discusses the unsettled issues in the latter technology and presents a critical overview of the hydrogen and fuel cell systems in the automotive industry. Finally, the report concludes with a series of recommendations aimed at the industry and government stakeholders for implementing and advancing hydrogen transportation projects. NOTE: SAE EDGE™ Research Reports are intended to identify and illuminate critical issues in emerging, but still unsettled, technologies of interest to the mobility industry. The goal of SAE EDGE™ Research Reports is to stimulate discussion and work in the hope of promoting and speeding resolution of identified issues. SAE EDGE™ Research Reports are not intended to resolve the issues they identify or close any topic to further scrutiny. Click here to access the full SAE EDGETM Research Report portfolio. https://doi.org/10.4271/EPR2019002
Publisher: SAE International
ISBN: 1468601016
Category : Technology & Engineering
Languages : en
Pages : 32
Book Description
Hydrogen fuel is rapidly emerging as a clean energy carrier solution that has the potential to decarbonize a variety of industries, including, or predominantly, the transportation industry. Fuel cell electric vehicles (FCEVs), which electrochemically combine stored hydrogen with atmospheric oxygen to efficiently generate electricity while producing only water vapor and small amounts of heat, are heralded to be a game-changing technology. The so-called hydrogen economy has the potential to displace traditional fossil fuel-based economy, with the transportation industry being the first mover in the hydrogen space. Technological advances made in the last decade in the areas of hydrogen generation and fuel cell technology have enabled the current uptake of hydrogen-based solutions for vehicle applications. Reduced costs, climate change, and carbon tax mechanisms are driving many governments, manufacturers, and consumers toward hydrogen-powered vehicles. The major drawbacks of hydrogen compared to the other competing clean-energy technologies (e.g., battery power), is the high cost of hydrogen refueling and FCEVs. However, application of the economy of scale will enable further cost reduction and broad international uptake of hydrogen in automotive applications. This SAE EDGE™ Research Report explores the opportunities and challenges of hydrogen and fuel cell systems in the automotive industry. With the help of expert contributors, several different technological, economic, and safety aspects are considered to develop a better understanding of this emerging hydrogen-based automotive industry. While debates between proponents of battery electric vehicles (BEVs) and FCEVs continue, the current report discusses the unsettled issues in the latter technology and presents a critical overview of the hydrogen and fuel cell systems in the automotive industry. Finally, the report concludes with a series of recommendations aimed at the industry and government stakeholders for implementing and advancing hydrogen transportation projects. NOTE: SAE EDGE™ Research Reports are intended to identify and illuminate critical issues in emerging, but still unsettled, technologies of interest to the mobility industry. The goal of SAE EDGE™ Research Reports is to stimulate discussion and work in the hope of promoting and speeding resolution of identified issues. SAE EDGE™ Research Reports are not intended to resolve the issues they identify or close any topic to further scrutiny. Click here to access the full SAE EDGETM Research Report portfolio. https://doi.org/10.4271/EPR2019002
Machinery and Energy Systems for the Hydrogen Economy
Author: Klaus Brun
Publisher: Elsevier
ISBN: 0323906605
Category : Science
Languages : en
Pages : 670
Book Description
Machinery and Energy Systems for the Hydrogen Economy covers all major machinery and heat engine types, designs and requirements for the hydrogen economy, from production through storage, distribution and consumption. Topics such as hydrogen in pipeline transport, for energy storage, and as a power plant fuel are covered in detail. Hydrogen machinery applications, their selection criteria, economics, safety aspects and operational limitations in different sectors of the hydrogen economy are also discussed. Although the book covers the hydrogen economy as a whole, its primary focus is on machinery and heat engine design and implementation within various production, transport, storage and usage applications. An invaluable resource for industry, academia and government, this book provides engineers, scientists and technical leaders with the knowledge they need to design and build the infrastructure of a hydrogen economy. - Provides design and application guidelines for hydrogen production, transportation, storage, distribution, and usage - Addresses all safety issues related to hydrogen machinery and systems - Discusses efficiencies, costs, and operational requirements for the hydrogen economy
Publisher: Elsevier
ISBN: 0323906605
Category : Science
Languages : en
Pages : 670
Book Description
Machinery and Energy Systems for the Hydrogen Economy covers all major machinery and heat engine types, designs and requirements for the hydrogen economy, from production through storage, distribution and consumption. Topics such as hydrogen in pipeline transport, for energy storage, and as a power plant fuel are covered in detail. Hydrogen machinery applications, their selection criteria, economics, safety aspects and operational limitations in different sectors of the hydrogen economy are also discussed. Although the book covers the hydrogen economy as a whole, its primary focus is on machinery and heat engine design and implementation within various production, transport, storage and usage applications. An invaluable resource for industry, academia and government, this book provides engineers, scientists and technical leaders with the knowledge they need to design and build the infrastructure of a hydrogen economy. - Provides design and application guidelines for hydrogen production, transportation, storage, distribution, and usage - Addresses all safety issues related to hydrogen machinery and systems - Discusses efficiencies, costs, and operational requirements for the hydrogen economy
GB/T 33978-2017 Translated English of Chinese Standard. (GBT 33978-2017, GB/T33978-2017, GBT33978-2017)
Author: https://www.chinesestandard.net
Publisher: https://www.chinesestandard.net
ISBN:
Category : Technology & Engineering
Languages : en
Pages : 23
Book Description
This Standard specifies the requirements, test equipment, test methods, inspection rules and marking, packaging, transportation and storage, etc. for proton exchange membrane fuel cell modules for road vehicles. This Standard applies to proton exchange membrane fuel cell modules for road vehicles (hereinafter referred to as modules).
Publisher: https://www.chinesestandard.net
ISBN:
Category : Technology & Engineering
Languages : en
Pages : 23
Book Description
This Standard specifies the requirements, test equipment, test methods, inspection rules and marking, packaging, transportation and storage, etc. for proton exchange membrane fuel cell modules for road vehicles. This Standard applies to proton exchange membrane fuel cell modules for road vehicles (hereinafter referred to as modules).
Use of Proton-exchange Membrane Fuel Cells in Ground Vehicles
Author: Rui Lin
Publisher: SAE International
ISBN: 1468605143
Category : Technology & Engineering
Languages : en
Pages : 28
Book Description
Fuel cell electric vehicles (FCEVs) require multiple components to operate properly, and the fuel cell stack—the source of power—is one of the most important components. While the number of enterprises manufacturing and selling fuel cell stacks is increasing globaly year after year, the residual challenges of core components and technologies still need to be resolved in order to keep pace with the development of lithium-ion batteries (i.e., its primary competitor). Additionally, many production and distribution standards are seen as unsettled. These barriers make large-scale commercialization an issue. Use of Proton-exchange Membrane Fuel Cells in Ground Vehicles explores the opportunities and challenges within the PEMFC industry. With the help of expert contributors, a critical overview of fuel cells and the FCEV industry is presented, and core technology, applications, costs, and trends are analyzed. The report concludes a series of recommendations for industry and government stakeholders to promote the development of FCEV industry. Click here to access the full SAE EDGETM Research Report portfolio. https://doi.org/10.4271/EPR2022020
Publisher: SAE International
ISBN: 1468605143
Category : Technology & Engineering
Languages : en
Pages : 28
Book Description
Fuel cell electric vehicles (FCEVs) require multiple components to operate properly, and the fuel cell stack—the source of power—is one of the most important components. While the number of enterprises manufacturing and selling fuel cell stacks is increasing globaly year after year, the residual challenges of core components and technologies still need to be resolved in order to keep pace with the development of lithium-ion batteries (i.e., its primary competitor). Additionally, many production and distribution standards are seen as unsettled. These barriers make large-scale commercialization an issue. Use of Proton-exchange Membrane Fuel Cells in Ground Vehicles explores the opportunities and challenges within the PEMFC industry. With the help of expert contributors, a critical overview of fuel cells and the FCEV industry is presented, and core technology, applications, costs, and trends are analyzed. The report concludes a series of recommendations for industry and government stakeholders to promote the development of FCEV industry. Click here to access the full SAE EDGETM Research Report portfolio. https://doi.org/10.4271/EPR2022020
Science and Engineering of Hydrogen-Based Energy Technologies
Author: Paulo Emilio Miranda
Publisher: Academic Press
ISBN: 0128142529
Category : Technology & Engineering
Languages : en
Pages : 440
Book Description
Science and Engineering of Hydrogen-Based Energy Technologies explores the generation of energy using hydrogen and hydrogen-rich fuels in fuel cells from the perspective of its integration into renewable energy systems using the most sound and current scientific knowledge. The book first examines the evolution of energy utilization and the role expected to be played by hydrogen energy technologies in the world's energy mix, not just for energy generation, but also for carbon capture, storage and utilization. It provides a general overview of the most common and promising types of fuel cells, such as PEMFCs, SOFCs and direct alcohol fuel cells. The co-production of chemical and electrolysis cells, as well as the available and future materials for fuel cells production are discussed. It then delves into the production of hydrogen from biomass, including waste materials, and from excess electricity produced by other renewable energy sources, such as solar, wind, hydro and geothermal. The main technological approaches to hydrogen storage are presented, along with several possible hydrogen energy engineering applications. Science and Engineering of Hydrogen-Based Energy Technologies's unique approach to hydrogen energy systems makes it useful for energy engineering researchers, professionals and graduate students in this field. Policy makers, energy planning and management professionals, and energy analysts can also benefit from the comprehensive overview that it provides. - Presents engineering fundamentals, commercially deployed technologies, up-and-coming developments and applications through a systemic approach - Explores the integration of hydrogen technologies in renewable energy systems, including solar, wind, bioenergy and ocean energy - Covers engineering standards, guidelines and regulations, as well as policy and social aspects for large-scale deployment of these technologies
Publisher: Academic Press
ISBN: 0128142529
Category : Technology & Engineering
Languages : en
Pages : 440
Book Description
Science and Engineering of Hydrogen-Based Energy Technologies explores the generation of energy using hydrogen and hydrogen-rich fuels in fuel cells from the perspective of its integration into renewable energy systems using the most sound and current scientific knowledge. The book first examines the evolution of energy utilization and the role expected to be played by hydrogen energy technologies in the world's energy mix, not just for energy generation, but also for carbon capture, storage and utilization. It provides a general overview of the most common and promising types of fuel cells, such as PEMFCs, SOFCs and direct alcohol fuel cells. The co-production of chemical and electrolysis cells, as well as the available and future materials for fuel cells production are discussed. It then delves into the production of hydrogen from biomass, including waste materials, and from excess electricity produced by other renewable energy sources, such as solar, wind, hydro and geothermal. The main technological approaches to hydrogen storage are presented, along with several possible hydrogen energy engineering applications. Science and Engineering of Hydrogen-Based Energy Technologies's unique approach to hydrogen energy systems makes it useful for energy engineering researchers, professionals and graduate students in this field. Policy makers, energy planning and management professionals, and energy analysts can also benefit from the comprehensive overview that it provides. - Presents engineering fundamentals, commercially deployed technologies, up-and-coming developments and applications through a systemic approach - Explores the integration of hydrogen technologies in renewable energy systems, including solar, wind, bioenergy and ocean energy - Covers engineering standards, guidelines and regulations, as well as policy and social aspects for large-scale deployment of these technologies
Encyclopedia of Electrochemical Power Sources
Author:
Publisher: Elsevier
ISBN: 0323958222
Category : Technology & Engineering
Languages : en
Pages : 5674
Book Description
The Encyclopedia of Electrochemical Power Sources, Second Edition, is a comprehensive seven-volume set that serves as a vital interdisciplinary reference for those working with batteries, fuel cells, electrolyzers, supercapacitors, and photo-electrochemical cells. With an increased focus on the environmental and economic impacts of electrochemical power sources, this work not only consolidates extensive coverage of the field but also serves as a gateway to the latest literature for professionals and students alike. The field of electrochemical power sources has experienced significant growth and development since the first edition was published in 2009. This is reflected in the exponential growth of the battery market, the improvement of many conventional systems, and the introduction of new systems and technologies. This completely revised second edition captures these advancements, providing updates on all scientific, technical, and economic developments over the past decade. Thematically arranged, this edition delves into crucial areas such as batteries, fuel cells, electrolyzers, supercapacitors, and photo-electrochemical cells. It explores challenges and advancements in electrode and electrolyte materials, structural design, optimization, application of novel materials, and performance analysis. This comprehensive resource, with its focus on the future of electrochemical power sources, is an essential tool for navigating this rapidly evolving field. - Covers the main types of power sources, including their operating principles, systems, materials, and applications - Serves as a primary source of information for electrochemists, materials scientists, energy technologists, and engineers - Incorporates 365 articles, with timely coverage of environmental and sustainability aspects - Arranged thematically to facilitate easy navigation of topics and easy exploration of the field across its key branches - Follows a consistent structure and features elements such as key objective boxes, summaries, figures, references, and cross-references etc., to help students, faculty, and professionals alike
Publisher: Elsevier
ISBN: 0323958222
Category : Technology & Engineering
Languages : en
Pages : 5674
Book Description
The Encyclopedia of Electrochemical Power Sources, Second Edition, is a comprehensive seven-volume set that serves as a vital interdisciplinary reference for those working with batteries, fuel cells, electrolyzers, supercapacitors, and photo-electrochemical cells. With an increased focus on the environmental and economic impacts of electrochemical power sources, this work not only consolidates extensive coverage of the field but also serves as a gateway to the latest literature for professionals and students alike. The field of electrochemical power sources has experienced significant growth and development since the first edition was published in 2009. This is reflected in the exponential growth of the battery market, the improvement of many conventional systems, and the introduction of new systems and technologies. This completely revised second edition captures these advancements, providing updates on all scientific, technical, and economic developments over the past decade. Thematically arranged, this edition delves into crucial areas such as batteries, fuel cells, electrolyzers, supercapacitors, and photo-electrochemical cells. It explores challenges and advancements in electrode and electrolyte materials, structural design, optimization, application of novel materials, and performance analysis. This comprehensive resource, with its focus on the future of electrochemical power sources, is an essential tool for navigating this rapidly evolving field. - Covers the main types of power sources, including their operating principles, systems, materials, and applications - Serves as a primary source of information for electrochemists, materials scientists, energy technologists, and engineers - Incorporates 365 articles, with timely coverage of environmental and sustainability aspects - Arranged thematically to facilitate easy navigation of topics and easy exploration of the field across its key branches - Follows a consistent structure and features elements such as key objective boxes, summaries, figures, references, and cross-references etc., to help students, faculty, and professionals alike