Author:
Publisher: Springer Nature
ISBN: 3031724100
Category :
Languages : en
Pages : 314
Book Description
Topics and Trends in Current Science Education
Author: Catherine Bruguière
Publisher: Springer Science & Business Media
ISBN: 9400772815
Category : Science
Languages : en
Pages : 591
Book Description
This book features 35 of best papers from the 9th European Science Education Research Association Conference, ESERA 2011, held in Lyon, France, September 5th-9th 2011. The ESERA international conference featured some 1,200 participants from Africa, Asia, Australia, Europe as well as North and South America offering insight into the field at the end of the first decade of the 21st century. This book presents studies that represent the current orientations of research in science education and includes studies in different educational traditions from around the world. It is organized into six parts around the three poles (content, students, teachers) and their interrelations of science education: after a general presentation of the volume (first part), the second part concerns SSI (Socio-Scientific Issues) dealing with new types of content, the third the teachers, the fourth the students, the fifth the relationships between teaching and learning, and the sixth the teaching resources and the curricula.
Publisher: Springer Science & Business Media
ISBN: 9400772815
Category : Science
Languages : en
Pages : 591
Book Description
This book features 35 of best papers from the 9th European Science Education Research Association Conference, ESERA 2011, held in Lyon, France, September 5th-9th 2011. The ESERA international conference featured some 1,200 participants from Africa, Asia, Australia, Europe as well as North and South America offering insight into the field at the end of the first decade of the 21st century. This book presents studies that represent the current orientations of research in science education and includes studies in different educational traditions from around the world. It is organized into six parts around the three poles (content, students, teachers) and their interrelations of science education: after a general presentation of the volume (first part), the second part concerns SSI (Socio-Scientific Issues) dealing with new types of content, the third the teachers, the fourth the students, the fifth the relationships between teaching and learning, and the sixth the teaching resources and the curricula.
Higher Education
Author: Larry Robert Smith
Publisher: Nova Science Publishers
ISBN: 9781626188341
Category : Education
Languages : en
Pages : 0
Book Description
Higher education has a vital role to play in the social and economic development of all countries. The sector, however, faces a significant number of critical issues to be addressed, major challenges to be met and overcome, and significant opportunities to be grasped and consolidated. Higher education institutions are now expected to operate, manage, compete, be creative and innovative, and provide intellectual leadership in a world characterised by increasingly rapid, pervasive and fundamental change. The question of how to maximise the performance of the higher education sector in the context of such an environment is the focus of the chapters in this book, which provide perspectives, analyses and examples relating to some of the major issues and challenges confronting higher education, both now and in the future. The information presented is drawn from recent research, as well as critical analyses of existing theory and practice. Authors are drawn from ten different countries: Australia; Brazil; Belgium; China; Israel; The Netherlands; Portugal; Turkey; the United Kingdom; and the USA. The topics addressed include: the role of higher education; government policy agendas; skills for the 21st Century; the role of higher education in addressing poverty; higher education and the labour market; the future of Brazilian higher education; higher education cost-sharing policy; the impact of political culture on higher education reform; accreditation; quality assurance; improving teaching and learning; promoting technology integration; creating inclusive higher education institutions; English for academic purposes; the relationship between learning style preference and academic disciplines; quality work-integrated learning; student learning in research-based doctorates; and developing emotional intelligence in higher education students.
Publisher: Nova Science Publishers
ISBN: 9781626188341
Category : Education
Languages : en
Pages : 0
Book Description
Higher education has a vital role to play in the social and economic development of all countries. The sector, however, faces a significant number of critical issues to be addressed, major challenges to be met and overcome, and significant opportunities to be grasped and consolidated. Higher education institutions are now expected to operate, manage, compete, be creative and innovative, and provide intellectual leadership in a world characterised by increasingly rapid, pervasive and fundamental change. The question of how to maximise the performance of the higher education sector in the context of such an environment is the focus of the chapters in this book, which provide perspectives, analyses and examples relating to some of the major issues and challenges confronting higher education, both now and in the future. The information presented is drawn from recent research, as well as critical analyses of existing theory and practice. Authors are drawn from ten different countries: Australia; Brazil; Belgium; China; Israel; The Netherlands; Portugal; Turkey; the United Kingdom; and the USA. The topics addressed include: the role of higher education; government policy agendas; skills for the 21st Century; the role of higher education in addressing poverty; higher education and the labour market; the future of Brazilian higher education; higher education cost-sharing policy; the impact of political culture on higher education reform; accreditation; quality assurance; improving teaching and learning; promoting technology integration; creating inclusive higher education institutions; English for academic purposes; the relationship between learning style preference and academic disciplines; quality work-integrated learning; student learning in research-based doctorates; and developing emotional intelligence in higher education students.
Metacognition in Science Education
Author: Anat Zohar
Publisher: Springer Science & Business Media
ISBN: 9400721323
Category : Science
Languages : en
Pages : 281
Book Description
Why is metacognition gaining recognition, both in education generally and in science learning in particular? What does metacognition contribute to the theory and practice of science learning? Metacognition in Science Education discusses emerging topics at the intersection of metacognition with the teaching and learning of science concepts, and with higher order thinking more generally. The book provides readers with a background on metacognition and analyses the latest developments in the field. It also gives an account of best-practice methodology. Expanding on the theoretical underpinnings of metacognition, and written by world leaders in metacognitive research, the chapters present cutting-edge studies on how various forms of metacognitive instruction enhance understanding and thinking in science classrooms. The editors strive for conceptual coherency in the various definitions of metacognition that appear in the book, and show that the study of metacognition is not an end in itself. Rather, it is integral to other important constructs, such as self-regulation, literacy, the teaching of thinking strategies, motivation, meta-strategies, conceptual understanding, reflection, and critical thinking. The book testifies to a growing recognition of the potential value of metacognition to science learning. It will motivate science educators in different educational contexts to incorporate this topic into their ongoing research and practice.
Publisher: Springer Science & Business Media
ISBN: 9400721323
Category : Science
Languages : en
Pages : 281
Book Description
Why is metacognition gaining recognition, both in education generally and in science learning in particular? What does metacognition contribute to the theory and practice of science learning? Metacognition in Science Education discusses emerging topics at the intersection of metacognition with the teaching and learning of science concepts, and with higher order thinking more generally. The book provides readers with a background on metacognition and analyses the latest developments in the field. It also gives an account of best-practice methodology. Expanding on the theoretical underpinnings of metacognition, and written by world leaders in metacognitive research, the chapters present cutting-edge studies on how various forms of metacognitive instruction enhance understanding and thinking in science classrooms. The editors strive for conceptual coherency in the various definitions of metacognition that appear in the book, and show that the study of metacognition is not an end in itself. Rather, it is integral to other important constructs, such as self-regulation, literacy, the teaching of thinking strategies, motivation, meta-strategies, conceptual understanding, reflection, and critical thinking. The book testifies to a growing recognition of the potential value of metacognition to science learning. It will motivate science educators in different educational contexts to incorporate this topic into their ongoing research and practice.
Engineering Education Trends in the Digital Era
Author: SerdarAsan, ?eyda
Publisher: IGI Global
ISBN: 1799825647
Category : Technology & Engineering
Languages : en
Pages : 302
Book Description
As the most influential activity for social and economic development of individuals and societies, education is a powerful means of shaping the future. The emergence of physical and digital technologies requires an overhaul that would affect not only the way engineering is approached but also the way education is delivered and designed. Therefore, designing and developing curricula focusing on the competencies and abilities of new generation engineers will be a necessity for sustainable success. Engineering Education Trends in the Digital Era is a critical scholarly resource that examines more digitized ways of designing and delivering learning and teaching processes and discusses and acts upon developing innovative engineering education within global, societal, economic, and environmental contexts. Highlighting a wide range of topics such as academic integrity, gamification, and professional development, this book is essential for teachers, researchers, educational policymakers, curriculum designers, educational software developers, administrators, and academicians.
Publisher: IGI Global
ISBN: 1799825647
Category : Technology & Engineering
Languages : en
Pages : 302
Book Description
As the most influential activity for social and economic development of individuals and societies, education is a powerful means of shaping the future. The emergence of physical and digital technologies requires an overhaul that would affect not only the way engineering is approached but also the way education is delivered and designed. Therefore, designing and developing curricula focusing on the competencies and abilities of new generation engineers will be a necessity for sustainable success. Engineering Education Trends in the Digital Era is a critical scholarly resource that examines more digitized ways of designing and delivering learning and teaching processes and discusses and acts upon developing innovative engineering education within global, societal, economic, and environmental contexts. Highlighting a wide range of topics such as academic integrity, gamification, and professional development, this book is essential for teachers, researchers, educational policymakers, curriculum designers, educational software developers, administrators, and academicians.
Theorizing the Future of Science Education Research
Author: Vaughan Prain
Publisher: Springer Nature
ISBN: 3030240134
Category : Science
Languages : en
Pages : 196
Book Description
This book reviews the current state of theoretical accounts of the what and how of science learning in schools. The book starts out by presenting big-picture perspectives on key issues. In these first chapters, it focuses on the range of resources students need to acquire and refine to become successful learners. It examines meaningful learner purposes and processes for doing science, and structural supports to optimize cognitive engagement and success. Subsequent chapters address how particular purposes, resources and experiences can be conceptualized as the basis to understand current practices. They also show how future learning opportunities should be designed, lived and reviewed to promote student engagement/learning. Specific topics include insights from neuro-imaging, actor-network theory, the role of reasoning in claim-making for learning in science, and development of disciplinary literacies, including writing and multi-modal meaning-making. All together the book offers leads to science educators on theoretical perspectives that have yielded valuable insights into science learning. In addition, it proposes new agendas to guide future practices and research in this subject.
Publisher: Springer Nature
ISBN: 3030240134
Category : Science
Languages : en
Pages : 196
Book Description
This book reviews the current state of theoretical accounts of the what and how of science learning in schools. The book starts out by presenting big-picture perspectives on key issues. In these first chapters, it focuses on the range of resources students need to acquire and refine to become successful learners. It examines meaningful learner purposes and processes for doing science, and structural supports to optimize cognitive engagement and success. Subsequent chapters address how particular purposes, resources and experiences can be conceptualized as the basis to understand current practices. They also show how future learning opportunities should be designed, lived and reviewed to promote student engagement/learning. Specific topics include insights from neuro-imaging, actor-network theory, the role of reasoning in claim-making for learning in science, and development of disciplinary literacies, including writing and multi-modal meaning-making. All together the book offers leads to science educators on theoretical perspectives that have yielded valuable insights into science learning. In addition, it proposes new agendas to guide future practices and research in this subject.
Technology-Enhanced Learning
Author: Nicolas Balacheff
Publisher: Springer Science & Business Media
ISBN: 1402098278
Category : Education
Languages : en
Pages : 330
Book Description
Technology-enhanced learning is a timely topic, the importance of which is recognized by educational researchers, practitioners, software designers, and policy makers. This volume presents and discusses current trends and issues in technology-enhanced learning from a European research and development perspective. This multifaceted and multidisciplinary topic is considered from four different viewpoints, each of which constitutes a separate section in the book. The sections include general as well as domain-specific principles of learning that have been found to play a significant role in technology-enhanced environments, ways to shape the environment to optimize learners’ interactions and learning, and specific technologies used by the environment to empower learners. An additional section discusses the work presented in the preceding sections from a computer science perspective and an implementation perspective. This book comes out of the work in Kaleidoscope: a European Network of Excellence in which over 1,000 people from more than 90 institutes across Europe participate. Kaleidoscope brings together researchers from diverse disciplines and cultures, through their collaboration and sharing of scientific outcomes, they are helping move the field of technology-enhanced learning forward.
Publisher: Springer Science & Business Media
ISBN: 1402098278
Category : Education
Languages : en
Pages : 330
Book Description
Technology-enhanced learning is a timely topic, the importance of which is recognized by educational researchers, practitioners, software designers, and policy makers. This volume presents and discusses current trends and issues in technology-enhanced learning from a European research and development perspective. This multifaceted and multidisciplinary topic is considered from four different viewpoints, each of which constitutes a separate section in the book. The sections include general as well as domain-specific principles of learning that have been found to play a significant role in technology-enhanced environments, ways to shape the environment to optimize learners’ interactions and learning, and specific technologies used by the environment to empower learners. An additional section discusses the work presented in the preceding sections from a computer science perspective and an implementation perspective. This book comes out of the work in Kaleidoscope: a European Network of Excellence in which over 1,000 people from more than 90 institutes across Europe participate. Kaleidoscope brings together researchers from diverse disciplines and cultures, through their collaboration and sharing of scientific outcomes, they are helping move the field of technology-enhanced learning forward.
New Trends in Physics Education Research
Author: Salvatore Magazù
Publisher:
ISBN: 9781536138931
Category : Mathematics
Languages : en
Pages : 0
Book Description
Those who operate in physics education frequently ask research operators for suggestions, reference models, updated content and answers for their professional work. So far, the sector has not achieved significant advances specifically in terms of both content updates and methodology approaches. In the special issue, titled New Trends in Physics Education Research, the authors, in addition to presenting some new topics in physics education, take into account the greater relevance that in recent years the Evidence Based Education has taken place. In this framework, the main points of issue include: 1) Dealing with new trends in teaching and learning processes in physics; highlighting new mathematics content for physics courses; 3) giving evidence of the key role played by laboratory activities in physics training courses; and 4) stressing the importance of interdisciplinary approaches as well as scientific culture, communication and dissemination. Physics teaching involves several fields and different disciplines (such as mathematics, philosophy, laboratory activities, etc.) where the same arguments are often explained without clarifying that often there is a close correlation between disciplines. In particular, an integrated theoretical and experimental approach can improve the knowledge of some subjects of physics and mathematics; furthermore, it is also useful to employ a joint approach with laboratory activities, and by doing so enriching topics of meaning. In such cases, mathematics provides the adapt tools for physics and also is able to drive physical intuition; on the other hand, physics and its laboratory activities provide simple access to mathematical topics of complex comprehension. The issue is addressed to academics and schoolteachers as well as researchers in the field of physics education.
Publisher:
ISBN: 9781536138931
Category : Mathematics
Languages : en
Pages : 0
Book Description
Those who operate in physics education frequently ask research operators for suggestions, reference models, updated content and answers for their professional work. So far, the sector has not achieved significant advances specifically in terms of both content updates and methodology approaches. In the special issue, titled New Trends in Physics Education Research, the authors, in addition to presenting some new topics in physics education, take into account the greater relevance that in recent years the Evidence Based Education has taken place. In this framework, the main points of issue include: 1) Dealing with new trends in teaching and learning processes in physics; highlighting new mathematics content for physics courses; 3) giving evidence of the key role played by laboratory activities in physics training courses; and 4) stressing the importance of interdisciplinary approaches as well as scientific culture, communication and dissemination. Physics teaching involves several fields and different disciplines (such as mathematics, philosophy, laboratory activities, etc.) where the same arguments are often explained without clarifying that often there is a close correlation between disciplines. In particular, an integrated theoretical and experimental approach can improve the knowledge of some subjects of physics and mathematics; furthermore, it is also useful to employ a joint approach with laboratory activities, and by doing so enriching topics of meaning. In such cases, mathematics provides the adapt tools for physics and also is able to drive physical intuition; on the other hand, physics and its laboratory activities provide simple access to mathematical topics of complex comprehension. The issue is addressed to academics and schoolteachers as well as researchers in the field of physics education.
Topics and Trends in Current Statistics Education Research
Author: Gail Burrill
Publisher: Springer
ISBN: 9783030034719
Category : Education
Languages : en
Pages : 0
Book Description
This book focuses on international research in statistics education, providing a solid understanding of the challenges in learning statistics. It presents the teaching and learning of statistics in various contexts, including designed settings for young children, students in formal schooling, tertiary level students, and teacher professional development. The book describes research on what to teach and platforms for delivering content (curriculum), strategies on how to teach for deep understanding, and includes several chapters on developing conceptual understanding (pedagogy and technology), teacher knowledge and beliefs, and the challenges teachers and students face when they solve statistical problems (reasoning and thinking). This new research in the field offers critical insights for college instructors, classroom teachers, curriculum designers, researchers in mathematics and statistics education as well as policy makers and newcomers to the field of statistics education. Statistics has become one of the key areas of study in the modern world of information and big data. The dramatic increase in demand for learning statistics in all disciplines is accompanied by tremendous growth in research in statistics education. Increasingly, countries are teaching more quantitative reasoning and statistics at lower and lower grade levels within mathematics, science and across many content areas. Research has revealed the many challenges in helping learners develop statistical literacy, reasoning, and thinking, and new curricula and technology tools show promise in facilitating the achievement of these desired outcomes.
Publisher: Springer
ISBN: 9783030034719
Category : Education
Languages : en
Pages : 0
Book Description
This book focuses on international research in statistics education, providing a solid understanding of the challenges in learning statistics. It presents the teaching and learning of statistics in various contexts, including designed settings for young children, students in formal schooling, tertiary level students, and teacher professional development. The book describes research on what to teach and platforms for delivering content (curriculum), strategies on how to teach for deep understanding, and includes several chapters on developing conceptual understanding (pedagogy and technology), teacher knowledge and beliefs, and the challenges teachers and students face when they solve statistical problems (reasoning and thinking). This new research in the field offers critical insights for college instructors, classroom teachers, curriculum designers, researchers in mathematics and statistics education as well as policy makers and newcomers to the field of statistics education. Statistics has become one of the key areas of study in the modern world of information and big data. The dramatic increase in demand for learning statistics in all disciplines is accompanied by tremendous growth in research in statistics education. Increasingly, countries are teaching more quantitative reasoning and statistics at lower and lower grade levels within mathematics, science and across many content areas. Research has revealed the many challenges in helping learners develop statistical literacy, reasoning, and thinking, and new curricula and technology tools show promise in facilitating the achievement of these desired outcomes.
Author:
Publisher: Springer Nature
ISBN: 3031724100
Category :
Languages : en
Pages : 314
Book Description
Publisher: Springer Nature
ISBN: 3031724100
Category :
Languages : en
Pages : 314
Book Description
Science Education Research in the Knowledge-Based Society
Author: Dimitris Psillos
Publisher: Springer Science & Business Media
ISBN: 9401701652
Category : Science
Languages : en
Pages : 453
Book Description
This book offers a global presentation of issues under study for improving science education research in the context of the knowledge-based society at a European and international level. It includes discussions of several theoretical approaches, research overviews, research methodologies, and the teaching and learning of science. It is based on papers presented at the Third International Conference of the European Science Education Research Association (Thessaloniki, Greece, August 2001).
Publisher: Springer Science & Business Media
ISBN: 9401701652
Category : Science
Languages : en
Pages : 453
Book Description
This book offers a global presentation of issues under study for improving science education research in the context of the knowledge-based society at a European and international level. It includes discussions of several theoretical approaches, research overviews, research methodologies, and the teaching and learning of science. It is based on papers presented at the Third International Conference of the European Science Education Research Association (Thessaloniki, Greece, August 2001).