Author: George D. Byrne
Publisher: World Scientific
ISBN: 9789810205577
Category : Mathematics
Languages : en
Pages : 222
Book Description
Ordinary differential equations (ODEs), differential-algebraic equations (DAEs) and partial differential equations (PDEs) are among the forms of mathematics most widely used in science and engineering. Each of these equation types is a focal point for international collaboration and research. This book contains papers by recognized numerical analysts who have made important contributions to the solution of differential systems in the context of realistic applications, and who now report the latest results of their work in numerical methods and software for ODEs/DAEs/PDEs. The papers address parallelization and vectorization of numerical methods, the numerical solution of ODEs/DAEs/PDEs, and the use of these numerical methods in realistic scientific and engineering applications.
Recent Developments in Numerical Methods and Software for ODEs/DAEs/PDEs
Author: George D. Byrne
Publisher: World Scientific
ISBN: 9789810205577
Category : Mathematics
Languages : en
Pages : 222
Book Description
Ordinary differential equations (ODEs), differential-algebraic equations (DAEs) and partial differential equations (PDEs) are among the forms of mathematics most widely used in science and engineering. Each of these equation types is a focal point for international collaboration and research. This book contains papers by recognized numerical analysts who have made important contributions to the solution of differential systems in the context of realistic applications, and who now report the latest results of their work in numerical methods and software for ODEs/DAEs/PDEs. The papers address parallelization and vectorization of numerical methods, the numerical solution of ODEs/DAEs/PDEs, and the use of these numerical methods in realistic scientific and engineering applications.
Publisher: World Scientific
ISBN: 9789810205577
Category : Mathematics
Languages : en
Pages : 222
Book Description
Ordinary differential equations (ODEs), differential-algebraic equations (DAEs) and partial differential equations (PDEs) are among the forms of mathematics most widely used in science and engineering. Each of these equation types is a focal point for international collaboration and research. This book contains papers by recognized numerical analysts who have made important contributions to the solution of differential systems in the context of realistic applications, and who now report the latest results of their work in numerical methods and software for ODEs/DAEs/PDEs. The papers address parallelization and vectorization of numerical methods, the numerical solution of ODEs/DAEs/PDEs, and the use of these numerical methods in realistic scientific and engineering applications.
Computational Mathematics in Engineering and Applied Science
Author: W.E. Schiesser
Publisher: CRC Press
ISBN: 1498710662
Category : Mathematics
Languages : en
Pages : 600
Book Description
Computational Mathematics in Engineering and Applied Science provides numerical algorithms and associated software for solving a spectrum of problems in ordinary differential equations (ODEs), differential algebraic equations (DAEs), and partial differential equations (PDEs) that occur in science and engineering. It presents detailed examples, each
Publisher: CRC Press
ISBN: 1498710662
Category : Mathematics
Languages : en
Pages : 600
Book Description
Computational Mathematics in Engineering and Applied Science provides numerical algorithms and associated software for solving a spectrum of problems in ordinary differential equations (ODEs), differential algebraic equations (DAEs), and partial differential equations (PDEs) that occur in science and engineering. It presents detailed examples, each
Method of Lines PDE Analysis in Biomedical Science and Engineering
Author: William E. Schiesser
Publisher: John Wiley & Sons
ISBN: 1119130514
Category : Mathematics
Languages : en
Pages : 413
Book Description
Presents the methodology and applications of ODE and PDE models within biomedical science and engineering With an emphasis on the method of lines (MOL) for partial differential equation (PDE) numerical integration, Method of Lines PDE Analysis in Biomedical Science and Engineering demonstrates the use of numerical methods for the computer solution of PDEs as applied to biomedical science and engineering (BMSE). Written by a well-known researcher in the field, the book provides an introduction to basic numerical methods for initial/boundary value PDEs before moving on to specific BMSE applications of PDEs. Featuring a straightforward approach, the book’s chapters follow a consistent and comprehensive format. First, each chapter begins by presenting the model as an ordinary differential equation (ODE)/PDE system, including the initial and boundary conditions. Next, the programming of the model equations is introduced through a series of R routines that primarily implement MOL for PDEs. Subsequently, the resulting numerical and graphical solution is discussed and interpreted with respect to the model equations. Finally, each chapter concludes with a review of the numerical algorithm performance, general observations and results, and possible extensions of the model. Method of Lines PDE Analysis in Biomedical Science and Engineering also includes: Examples of MOL analysis of PDEs, including BMSE applications in wave front resolution in chromatography, VEGF angiogenesis, thermographic tumor location, blood-tissue transport, two fluid and membrane mass transfer, artificial liver support system, cross diffusion epidemiology, oncolytic virotherapy, tumor cell density in glioblastomas, and variable grids Discussions on the use of R software, which facilitates immediate solutions to differential equation problems without having to first learn the basic concepts of numerical analysis for PDEs and the programming of PDE algorithms A companion website that provides source code for the R routines Method of Lines PDE Analysis in Biomedical Science and Engineering is an introductory reference for researchers, scientists, clinicians, medical researchers, mathematicians, statisticians, chemical engineers, epidemiologists, and pharmacokineticists as well as anyone interested in clinical applications and the interpretation of experimental data with differential equation models. The book is also an ideal textbook for graduate-level courses in applied mathematics, BMSE, biology, biophysics, biochemistry, medicine, and engineering.
Publisher: John Wiley & Sons
ISBN: 1119130514
Category : Mathematics
Languages : en
Pages : 413
Book Description
Presents the methodology and applications of ODE and PDE models within biomedical science and engineering With an emphasis on the method of lines (MOL) for partial differential equation (PDE) numerical integration, Method of Lines PDE Analysis in Biomedical Science and Engineering demonstrates the use of numerical methods for the computer solution of PDEs as applied to biomedical science and engineering (BMSE). Written by a well-known researcher in the field, the book provides an introduction to basic numerical methods for initial/boundary value PDEs before moving on to specific BMSE applications of PDEs. Featuring a straightforward approach, the book’s chapters follow a consistent and comprehensive format. First, each chapter begins by presenting the model as an ordinary differential equation (ODE)/PDE system, including the initial and boundary conditions. Next, the programming of the model equations is introduced through a series of R routines that primarily implement MOL for PDEs. Subsequently, the resulting numerical and graphical solution is discussed and interpreted with respect to the model equations. Finally, each chapter concludes with a review of the numerical algorithm performance, general observations and results, and possible extensions of the model. Method of Lines PDE Analysis in Biomedical Science and Engineering also includes: Examples of MOL analysis of PDEs, including BMSE applications in wave front resolution in chromatography, VEGF angiogenesis, thermographic tumor location, blood-tissue transport, two fluid and membrane mass transfer, artificial liver support system, cross diffusion epidemiology, oncolytic virotherapy, tumor cell density in glioblastomas, and variable grids Discussions on the use of R software, which facilitates immediate solutions to differential equation problems without having to first learn the basic concepts of numerical analysis for PDEs and the programming of PDE algorithms A companion website that provides source code for the R routines Method of Lines PDE Analysis in Biomedical Science and Engineering is an introductory reference for researchers, scientists, clinicians, medical researchers, mathematicians, statisticians, chemical engineers, epidemiologists, and pharmacokineticists as well as anyone interested in clinical applications and the interpretation of experimental data with differential equation models. The book is also an ideal textbook for graduate-level courses in applied mathematics, BMSE, biology, biophysics, biochemistry, medicine, and engineering.
Finite Difference Methods for Ordinary and Partial Differential Equations
Author: Randall J. LeVeque
Publisher: SIAM
ISBN: 9780898717839
Category : Mathematics
Languages : en
Pages : 356
Book Description
This book introduces finite difference methods for both ordinary differential equations (ODEs) and partial differential equations (PDEs) and discusses the similarities and differences between algorithm design and stability analysis for different types of equations. A unified view of stability theory for ODEs and PDEs is presented, and the interplay between ODE and PDE analysis is stressed. The text emphasizes standard classical methods, but several newer approaches also are introduced and are described in the context of simple motivating examples.
Publisher: SIAM
ISBN: 9780898717839
Category : Mathematics
Languages : en
Pages : 356
Book Description
This book introduces finite difference methods for both ordinary differential equations (ODEs) and partial differential equations (PDEs) and discusses the similarities and differences between algorithm design and stability analysis for different types of equations. A unified view of stability theory for ODEs and PDEs is presented, and the interplay between ODE and PDE analysis is stressed. The text emphasizes standard classical methods, but several newer approaches also are introduced and are described in the context of simple motivating examples.
Constrained Dynamics Computations: Models & Case Studies
Author: Bud Fox
Publisher: World Scientific
ISBN: 9814492728
Category : Technology & Engineering
Languages : en
Pages : 191
Book Description
This book introduces a practical approach to the modelling and computation of real-world systems. Multibody dynamics, planar and spatial modelling, and numerical methods are all pursued to obtain information about the behaviour of various dynamical systems. Each study presents the method of modelling and the ensuing differential equations governing the system behaviour. Integration of the equations yields results which are carefully discussed and which indicate how useful information may be obtained from the study. The studies include planar mechanisms, heavy equipment, automobile crash simulation and a spatial planetary system example. Research students, scientists and engineers will appreciate the practical approach taken in this book.
Publisher: World Scientific
ISBN: 9814492728
Category : Technology & Engineering
Languages : en
Pages : 191
Book Description
This book introduces a practical approach to the modelling and computation of real-world systems. Multibody dynamics, planar and spatial modelling, and numerical methods are all pursued to obtain information about the behaviour of various dynamical systems. Each study presents the method of modelling and the ensuing differential equations governing the system behaviour. Integration of the equations yields results which are carefully discussed and which indicate how useful information may be obtained from the study. The studies include planar mechanisms, heavy equipment, automobile crash simulation and a spatial planetary system example. Research students, scientists and engineers will appreciate the practical approach taken in this book.
Constrained Dynamics Computations
Author: Bud Fox
Publisher: World Scientific
ISBN: 9789812792532
Category : Science
Languages : en
Pages : 200
Book Description
A practical approach to the modelling and computation of real-world systems. Multibody dynamics, planar and spatial modelling, and numerical methods are all pursued to obtain information about the behaviour of various dynamical systems. Each study presents the method of modelling and the ensuing differential equations governing the system behaviour. Integration of the equations yields results which are carefully discussed and which indicate how useful information may be obtained from the study. The studies include planar mechanisms, heavy equipment, automobile crash simulation and a spatial planetary system example.
Publisher: World Scientific
ISBN: 9789812792532
Category : Science
Languages : en
Pages : 200
Book Description
A practical approach to the modelling and computation of real-world systems. Multibody dynamics, planar and spatial modelling, and numerical methods are all pursued to obtain information about the behaviour of various dynamical systems. Each study presents the method of modelling and the ensuing differential equations governing the system behaviour. Integration of the equations yields results which are carefully discussed and which indicate how useful information may be obtained from the study. The studies include planar mechanisms, heavy equipment, automobile crash simulation and a spatial planetary system example.
Surveys in Differential-Algebraic Equations III
Author: Achim Ilchmann
Publisher: Springer
ISBN: 331922428X
Category : Mathematics
Languages : en
Pages : 320
Book Description
The present volume comprises survey articles on various fields of Differential-Algebraic Equations (DAEs), which have widespread applications in controlled dynamical systems, especially in mechanical and electrical engineering and a strong relation to (ordinary) differential equations. The individual chapters provide reviews, presentations of the current state of research and new concepts in - Flexibility of DAE formulations - Reachability analysis and deterministic global optimization - Numerical linear algebra methods - Boundary value problems The results are presented in an accessible style, making this book suitable not only for active researchers but also for graduate students (with a good knowledge of the basic principles of DAEs) for self-study.
Publisher: Springer
ISBN: 331922428X
Category : Mathematics
Languages : en
Pages : 320
Book Description
The present volume comprises survey articles on various fields of Differential-Algebraic Equations (DAEs), which have widespread applications in controlled dynamical systems, especially in mechanical and electrical engineering and a strong relation to (ordinary) differential equations. The individual chapters provide reviews, presentations of the current state of research and new concepts in - Flexibility of DAE formulations - Reachability analysis and deterministic global optimization - Numerical linear algebra methods - Boundary value problems The results are presented in an accessible style, making this book suitable not only for active researchers but also for graduate students (with a good knowledge of the basic principles of DAEs) for self-study.
Numerical Analysis of Partial Differential Equations Using Maple and MATLAB
Author: Martin J. Gander
Publisher: SIAM
ISBN: 161197531X
Category : Science
Languages : en
Pages : 163
Book Description
This book provides an elementary yet comprehensive introduction to the numerical solution of partial differential equations (PDEs). Used to model important phenomena, such as the heating of apartments and the behavior of electromagnetic waves, these equations have applications in engineering and the life sciences, and most can only be solved approximately using computers.? Numerical Analysis of Partial Differential Equations Using Maple and MATLAB provides detailed descriptions of the four major classes of discretization methods for PDEs (finite difference method, finite volume method, spectral method, and finite element method) and runnable MATLAB? code for each of the discretization methods and exercises. It also gives self-contained convergence proofs for each method using the tools and techniques required for the general convergence analysis but adapted to the simplest setting to keep the presentation clear and complete. This book is intended for advanced undergraduate and early graduate students in numerical analysis and scientific computing and researchers in related fields. It is appropriate for a course on numerical methods for partial differential equations.
Publisher: SIAM
ISBN: 161197531X
Category : Science
Languages : en
Pages : 163
Book Description
This book provides an elementary yet comprehensive introduction to the numerical solution of partial differential equations (PDEs). Used to model important phenomena, such as the heating of apartments and the behavior of electromagnetic waves, these equations have applications in engineering and the life sciences, and most can only be solved approximately using computers.? Numerical Analysis of Partial Differential Equations Using Maple and MATLAB provides detailed descriptions of the four major classes of discretization methods for PDEs (finite difference method, finite volume method, spectral method, and finite element method) and runnable MATLAB? code for each of the discretization methods and exercises. It also gives self-contained convergence proofs for each method using the tools and techniques required for the general convergence analysis but adapted to the simplest setting to keep the presentation clear and complete. This book is intended for advanced undergraduate and early graduate students in numerical analysis and scientific computing and researchers in related fields. It is appropriate for a course on numerical methods for partial differential equations.
A Practical Guide to Pseudospectral Methods
Author: Bengt Fornberg
Publisher: Cambridge University Press
ISBN: 9780521645645
Category : Mathematics
Languages : en
Pages : 248
Book Description
This book explains how, when and why the pseudospectral approach works.
Publisher: Cambridge University Press
ISBN: 9780521645645
Category : Mathematics
Languages : en
Pages : 248
Book Description
This book explains how, when and why the pseudospectral approach works.
Control and Optimization with Differential-Algebraic Constraints
Author: Lorenz T. Biegler
Publisher: SIAM
ISBN: 1611972248
Category : Mathematics
Languages : en
Pages : 351
Book Description
A cutting-edge guide to modelling complex systems with differential-algebraic equations, suitable for applied mathematicians, engineers and computational scientists.
Publisher: SIAM
ISBN: 1611972248
Category : Mathematics
Languages : en
Pages : 351
Book Description
A cutting-edge guide to modelling complex systems with differential-algebraic equations, suitable for applied mathematicians, engineers and computational scientists.