Author: Luchezar L. Avramov
Publisher: Cambridge University Press
ISBN: 0521831954
Category : Mathematics
Languages : en
Pages : 7
Book Description
This book describes the interaction of commutative algebra with other areas of mathematics, including algebraic geometry, group cohomology, and combinatorics.
Trends in Commutative Algebra
Author: Luchezar L. Avramov
Publisher: Cambridge University Press
ISBN: 0521831954
Category : Mathematics
Languages : en
Pages : 7
Book Description
This book describes the interaction of commutative algebra with other areas of mathematics, including algebraic geometry, group cohomology, and combinatorics.
Publisher: Cambridge University Press
ISBN: 0521831954
Category : Mathematics
Languages : en
Pages : 7
Book Description
This book describes the interaction of commutative algebra with other areas of mathematics, including algebraic geometry, group cohomology, and combinatorics.
Recent Developments in Commutative Algebra
Author: Claudia Polini
Publisher: Springer Nature
ISBN: 3030650642
Category : Mathematics
Languages : en
Pages : 127
Book Description
This book presents four lectures on Rees rings and blow-ups, Koszul modules with applications to syzygies, Gröbner bases and degenerations, and applications of Adams operations. Commutative Algebra has witnessed a number of spectacular developments in recent years, including the resolution of long-standing problems; the new techniques and perspectives are leading to an extraordinary transformation in the field. The material contained in this volume, based on lectures given at a workshop held in Levico Terme, Trento, in July 2019, highlights some of these developments. The text will be a valuable asset to graduate students and researchers in commutative algebra and related fields.
Publisher: Springer Nature
ISBN: 3030650642
Category : Mathematics
Languages : en
Pages : 127
Book Description
This book presents four lectures on Rees rings and blow-ups, Koszul modules with applications to syzygies, Gröbner bases and degenerations, and applications of Adams operations. Commutative Algebra has witnessed a number of spectacular developments in recent years, including the resolution of long-standing problems; the new techniques and perspectives are leading to an extraordinary transformation in the field. The material contained in this volume, based on lectures given at a workshop held in Levico Terme, Trento, in July 2019, highlights some of these developments. The text will be a valuable asset to graduate students and researchers in commutative algebra and related fields.
Six Lectures on Commutative Algebra
Author: J. Elias
Publisher: Springer Science & Business Media
ISBN: 3034603290
Category : Mathematics
Languages : en
Pages : 402
Book Description
Interest in commutative algebra has surged over the past decades. In order to survey and highlight recent developments in this rapidly expanding field, the Centre de Recerca Matematica in Bellaterra organized a ten-days Summer School on Commutative Algebra in 1996. Lectures were presented by six high-level specialists, L. Avramov (Purdue), M.K. Green (UCLA), C. Huneke (Purdue), P. Schenzel (Halle), G. Valla (Genova) and W.V. Vasconcelos (Rutgers), providing a fresh and extensive account of the results, techniques and problems of some of the most active areas of research. The present volume is a synthesis of the lectures given by these authors. Research workers as well as graduate students in commutative algebra and nearby areas will find a useful overview of the field and recent developments in it. Reviews "All six articles are at a very high level; they provide a thorough survey of results and methods in their subject areas, illustrated with algebraic or geometric examples." - Acta Scientiarum Mathematicarum Avramov lecture: "... it contains all the major results [on infinite free resolutions], it explains carefully all the different techniques that apply, it provides complete proofs (...). This will be extremely helpful for the novice as well as the experienced." - Mathematical reviews Huneke lecture: "The topic is tight closure, a theory developed by M. Hochster and the author which has in a short time proved to be a useful and powerful tool. (...) The paper is extremely well organized, written, and motivated." - Zentralblatt MATH Schenzel lecture: "... this paper is an excellent introduction to applications of local cohomology." - Zentralblatt MATH Valla lecture: "... since he is an acknowledged expert on Hilbert functions and since his interest has been so broad, he has done a superb job in giving the readers a lively picture of the theory." - Mathematical reviews Vasconcelos lecture: "This is a very useful survey on invariants of modules over noetherian rings, relations between them, and how to compute them." - Zentralblatt MATH
Publisher: Springer Science & Business Media
ISBN: 3034603290
Category : Mathematics
Languages : en
Pages : 402
Book Description
Interest in commutative algebra has surged over the past decades. In order to survey and highlight recent developments in this rapidly expanding field, the Centre de Recerca Matematica in Bellaterra organized a ten-days Summer School on Commutative Algebra in 1996. Lectures were presented by six high-level specialists, L. Avramov (Purdue), M.K. Green (UCLA), C. Huneke (Purdue), P. Schenzel (Halle), G. Valla (Genova) and W.V. Vasconcelos (Rutgers), providing a fresh and extensive account of the results, techniques and problems of some of the most active areas of research. The present volume is a synthesis of the lectures given by these authors. Research workers as well as graduate students in commutative algebra and nearby areas will find a useful overview of the field and recent developments in it. Reviews "All six articles are at a very high level; they provide a thorough survey of results and methods in their subject areas, illustrated with algebraic or geometric examples." - Acta Scientiarum Mathematicarum Avramov lecture: "... it contains all the major results [on infinite free resolutions], it explains carefully all the different techniques that apply, it provides complete proofs (...). This will be extremely helpful for the novice as well as the experienced." - Mathematical reviews Huneke lecture: "The topic is tight closure, a theory developed by M. Hochster and the author which has in a short time proved to be a useful and powerful tool. (...) The paper is extremely well organized, written, and motivated." - Zentralblatt MATH Schenzel lecture: "... this paper is an excellent introduction to applications of local cohomology." - Zentralblatt MATH Valla lecture: "... since he is an acknowledged expert on Hilbert functions and since his interest has been so broad, he has done a superb job in giving the readers a lively picture of the theory." - Mathematical reviews Vasconcelos lecture: "This is a very useful survey on invariants of modules over noetherian rings, relations between them, and how to compute them." - Zentralblatt MATH
Combinatorial Commutative Algebra
Author: Ezra Miller
Publisher: Springer Science & Business Media
ISBN: 9780387237077
Category : Mathematics
Languages : en
Pages : 442
Book Description
Recent developments are covered Contains over 100 figures and 250 exercises Includes complete proofs
Publisher: Springer Science & Business Media
ISBN: 9780387237077
Category : Mathematics
Languages : en
Pages : 442
Book Description
Recent developments are covered Contains over 100 figures and 250 exercises Includes complete proofs
Advances in Commutative Algebra
Author: Ayman Badawi
Publisher: Springer
ISBN: 9811370281
Category : Mathematics
Languages : en
Pages : 280
Book Description
This book highlights the contributions of the eminent mathematician and leading algebraist David F. Anderson in wide-ranging areas of commutative algebra. It provides a balance of topics for experts and non-experts, with a mix of survey papers to offer a synopsis of developments across a range of areas of commutative algebra and outlining Anderson’s work. The book is divided into two sections—surveys and recent research developments—with each section presenting material from all the major areas in commutative algebra. The book is of interest to graduate students and experienced researchers alike.
Publisher: Springer
ISBN: 9811370281
Category : Mathematics
Languages : en
Pages : 280
Book Description
This book highlights the contributions of the eminent mathematician and leading algebraist David F. Anderson in wide-ranging areas of commutative algebra. It provides a balance of topics for experts and non-experts, with a mix of survey papers to offer a synopsis of developments across a range of areas of commutative algebra and outlining Anderson’s work. The book is divided into two sections—surveys and recent research developments—with each section presenting material from all the major areas in commutative algebra. The book is of interest to graduate students and experienced researchers alike.
Commutative Algebra
Author: Marco Fontana
Publisher: Springer Science & Business Media
ISBN: 144196990X
Category : Mathematics
Languages : en
Pages : 491
Book Description
Commutative algebra is a rapidly growing subject that is developing in many different directions. This volume presents several of the most recent results from various areas related to both Noetherian and non-Noetherian commutative algebra. This volume contains a collection of invited survey articles by some of the leading experts in the field. The authors of these chapters have been carefully selected for their important contributions to an area of commutative-algebraic research. Some topics presented in the volume include: generalizations of cyclic modules, zero divisor graphs, class semigroups, forcing algebras, syzygy bundles, tight closure, Gorenstein dimensions, tensor products of algebras over fields, as well as many others. This book is intended for researchers and graduate students interested in studying the many topics related to commutative algebra.
Publisher: Springer Science & Business Media
ISBN: 144196990X
Category : Mathematics
Languages : en
Pages : 491
Book Description
Commutative algebra is a rapidly growing subject that is developing in many different directions. This volume presents several of the most recent results from various areas related to both Noetherian and non-Noetherian commutative algebra. This volume contains a collection of invited survey articles by some of the leading experts in the field. The authors of these chapters have been carefully selected for their important contributions to an area of commutative-algebraic research. Some topics presented in the volume include: generalizations of cyclic modules, zero divisor graphs, class semigroups, forcing algebras, syzygy bundles, tight closure, Gorenstein dimensions, tensor products of algebras over fields, as well as many others. This book is intended for researchers and graduate students interested in studying the many topics related to commutative algebra.
Foundations of Commutative Rings and Their Modules
Author: Fanggui Wang
Publisher: Springer
ISBN: 9811033374
Category : Mathematics
Languages : en
Pages : 714
Book Description
This book provides an introduction to the basics and recent developments of commutative algebra. A glance at the contents of the first five chapters shows that the topics covered are ones that usually are included in any commutative algebra text. However, the contents of this book differ significantly from most commutative algebra texts: namely, its treatment of the Dedekind–Mertens formula, the (small) finitistic dimension of a ring, Gorenstein rings, valuation overrings and the valuative dimension, and Nagata rings. Going further, Chapter 6 presents w-modules over commutative rings as they can be most commonly used by torsion theory and multiplicative ideal theory. Chapter 7 deals with multiplicative ideal theory over integral domains. Chapter 8 collects various results of the pullbacks, especially Milnor squares and D+M constructions, which are probably the most important example-generating machines. In Chapter 9, coherent rings with finite weak global dimensions are probed, and the local ring of weak global dimension two is elaborated on by combining homological tricks and methods of star operation theory. Chapter 10 is devoted to the Grothendieck group of a commutative ring. In particular, the Bass–Quillen problem is discussed. Finally, Chapter 11 aims to introduce relative homological algebra, especially where the related concepts of integral domains which appear in classical ideal theory are defined and investigated by using the class of Gorenstein projective modules. Each section of the book is followed by a selection of exercises of varying degrees of difficulty. This book will appeal to a wide readership from graduate students to academic researchers who are interested in studying commutative algebra.
Publisher: Springer
ISBN: 9811033374
Category : Mathematics
Languages : en
Pages : 714
Book Description
This book provides an introduction to the basics and recent developments of commutative algebra. A glance at the contents of the first five chapters shows that the topics covered are ones that usually are included in any commutative algebra text. However, the contents of this book differ significantly from most commutative algebra texts: namely, its treatment of the Dedekind–Mertens formula, the (small) finitistic dimension of a ring, Gorenstein rings, valuation overrings and the valuative dimension, and Nagata rings. Going further, Chapter 6 presents w-modules over commutative rings as they can be most commonly used by torsion theory and multiplicative ideal theory. Chapter 7 deals with multiplicative ideal theory over integral domains. Chapter 8 collects various results of the pullbacks, especially Milnor squares and D+M constructions, which are probably the most important example-generating machines. In Chapter 9, coherent rings with finite weak global dimensions are probed, and the local ring of weak global dimension two is elaborated on by combining homological tricks and methods of star operation theory. Chapter 10 is devoted to the Grothendieck group of a commutative ring. In particular, the Bass–Quillen problem is discussed. Finally, Chapter 11 aims to introduce relative homological algebra, especially where the related concepts of integral domains which appear in classical ideal theory are defined and investigated by using the class of Gorenstein projective modules. Each section of the book is followed by a selection of exercises of varying degrees of difficulty. This book will appeal to a wide readership from graduate students to academic researchers who are interested in studying commutative algebra.
Progress in Commutative Algebra 1
Author: Christopher Francisco
Publisher: Walter de Gruyter
ISBN: 3110250403
Category : Mathematics
Languages : en
Pages : 377
Book Description
This is the first of two volumes of a state-of-the-art survey article collection which originates from three commutative algebra sessions at the 2009 Fall Southeastern American Mathematical Society Meeting at Florida Atlantic University. The articles reach into diverse areas of commutative algebra and build a bridge between Noetherian and non-Noetherian commutative algebra. These volumes present current trends in two of the most active areas of commutative algebra: non-noetherian rings (factorization, ideal theory, integrality), and noetherian rings (the local theory, graded situation, and interactions with combinatorics and geometry). This volume contains combinatorial and homological surveys. The combinatorial papers document some of the increasing focus in commutative algebra recently on the interaction between algebra and combinatorics. Specifically, one can use combinatorial techniques to investigate resolutions and other algebraic structures as with the papers of Fløystad on Boij-Söderburg theory, of Geramita, Harbourne and Migliore, and of Cooper on Hilbert functions, of Clark on minimal poset resolutions and of Mermin on simplicial resolutions. One can also utilize algebraic invariants to understand combinatorial structures like graphs, hypergraphs, and simplicial complexes such as in the paper of Morey and Villarreal on edge ideals. Homological techniques have become indispensable tools for the study of noetherian rings. These ideas have yielded amazing levels of interaction with other fields like algebraic topology (via differential graded techniques as well as the foundations of homological algebra), analysis (via the study of D-modules), and combinatorics (as described in the previous paragraph). The homological articles the editors have included in this volume relate mostly to how homological techniques help us better understand rings and singularities both noetherian and non-noetherian such as in the papers by Roberts, Yao, Hummel and Leuschke.
Publisher: Walter de Gruyter
ISBN: 3110250403
Category : Mathematics
Languages : en
Pages : 377
Book Description
This is the first of two volumes of a state-of-the-art survey article collection which originates from three commutative algebra sessions at the 2009 Fall Southeastern American Mathematical Society Meeting at Florida Atlantic University. The articles reach into diverse areas of commutative algebra and build a bridge between Noetherian and non-Noetherian commutative algebra. These volumes present current trends in two of the most active areas of commutative algebra: non-noetherian rings (factorization, ideal theory, integrality), and noetherian rings (the local theory, graded situation, and interactions with combinatorics and geometry). This volume contains combinatorial and homological surveys. The combinatorial papers document some of the increasing focus in commutative algebra recently on the interaction between algebra and combinatorics. Specifically, one can use combinatorial techniques to investigate resolutions and other algebraic structures as with the papers of Fløystad on Boij-Söderburg theory, of Geramita, Harbourne and Migliore, and of Cooper on Hilbert functions, of Clark on minimal poset resolutions and of Mermin on simplicial resolutions. One can also utilize algebraic invariants to understand combinatorial structures like graphs, hypergraphs, and simplicial complexes such as in the paper of Morey and Villarreal on edge ideals. Homological techniques have become indispensable tools for the study of noetherian rings. These ideas have yielded amazing levels of interaction with other fields like algebraic topology (via differential graded techniques as well as the foundations of homological algebra), analysis (via the study of D-modules), and combinatorics (as described in the previous paragraph). The homological articles the editors have included in this volume relate mostly to how homological techniques help us better understand rings and singularities both noetherian and non-noetherian such as in the papers by Roberts, Yao, Hummel and Leuschke.
Steps in Commutative Algebra
Author: R. Y. Sharp
Publisher: Cambridge University Press
ISBN: 0521646235
Category : Mathematics
Languages : en
Pages : 371
Book Description
Introductory account of commutative algebra, aimed at students with a background in basic algebra.
Publisher: Cambridge University Press
ISBN: 0521646235
Category : Mathematics
Languages : en
Pages : 371
Book Description
Introductory account of commutative algebra, aimed at students with a background in basic algebra.
Groups, Modules, and Model Theory - Surveys and Recent Developments
Author: Manfred Droste
Publisher: Springer
ISBN: 331951718X
Category : Mathematics
Languages : en
Pages : 493
Book Description
This volume focuses on group theory and model theory with a particular emphasis on the interplay of the two areas. The survey papers provide an overview of the developments across group, module, and model theory while the research papers present the most recent study in those same areas. With introductory sections that make the topics easily accessible to students, the papers in this volume will appeal to beginning graduate students and experienced researchers alike. As a whole, this book offers a cross-section view of the areas in group, module, and model theory, covering topics such as DP-minimal groups, Abelian groups, countable 1-transitive trees, and module approximations. The papers in this book are the proceedings of the conference “New Pathways between Group Theory and Model Theory,” which took place February 1-4, 2016, in Mülheim an der Ruhr, Germany, in honor of the editors’ colleague Rüdiger Göbel. This publication is dedicated to Professor Göbel, who passed away in 2014. He was one of the leading experts in Abelian group theory.
Publisher: Springer
ISBN: 331951718X
Category : Mathematics
Languages : en
Pages : 493
Book Description
This volume focuses on group theory and model theory with a particular emphasis on the interplay of the two areas. The survey papers provide an overview of the developments across group, module, and model theory while the research papers present the most recent study in those same areas. With introductory sections that make the topics easily accessible to students, the papers in this volume will appeal to beginning graduate students and experienced researchers alike. As a whole, this book offers a cross-section view of the areas in group, module, and model theory, covering topics such as DP-minimal groups, Abelian groups, countable 1-transitive trees, and module approximations. The papers in this book are the proceedings of the conference “New Pathways between Group Theory and Model Theory,” which took place February 1-4, 2016, in Mülheim an der Ruhr, Germany, in honor of the editors’ colleague Rüdiger Göbel. This publication is dedicated to Professor Göbel, who passed away in 2014. He was one of the leading experts in Abelian group theory.