Real-Time Multi-Chip Neural Network for Cognitive Systems

Real-Time Multi-Chip Neural Network for Cognitive Systems PDF Author: Amir Zjajo
Publisher: CRC Press
ISBN: 1000793524
Category : Science
Languages : en
Pages : 265

Get Book Here

Book Description
Simulation of brain neurons in real-time using biophysically-meaningful models is a pre-requisite for comprehensive understanding of how neurons process information and communicate with each other, in effect efficiently complementing in-vivo experiments. In spiking neural networks (SNNs), propagated information is not just encoded by the firing rate of each neuron in the network, as in artificial neural networks (ANNs), but, in addition, by amplitude, spike-train patterns, and the transfer rate. The high level of realism of SNNs and more significant computational and analytic capabilities in comparison with ANNs, however, limit the size of the realized networks. Consequently, the main challenge in building complex and biophysically-accurate SNNs is largely posed by the high computational and data transfer demands.Real-Time Multi-Chip Neural Network for Cognitive Systems presents novel real-time, reconfigurable, multi-chip SNN system architecture based on localized communication, which effectively reduces the communication cost to a linear growth. The system use double floating-point arithmetic for the most biologically accurate cell behavior simulation, and is flexible enough to offer an easy implementation of various neuron network topologies, cell communication schemes, as well as models and kinds of cells. The system offers a high run-time configurability, which reduces the need for resynthesizing the system. In addition, the simulator features configurable on- and off-chip communication latencies as well as neuron calculation latencies. All parts of the system are generated automatically based on the neuron interconnection scheme in use. The simulator allows exploration of different system configurations, e.g. the interconnection scheme between the neurons, the intracellular concentration of different chemical compounds (ions), which affect how action potentials are initiated and propagate.

Real-Time Multi-Chip Neural Network for Cognitive Systems

Real-Time Multi-Chip Neural Network for Cognitive Systems PDF Author: Amir Zjajo
Publisher: CRC Press
ISBN: 1000793524
Category : Science
Languages : en
Pages : 265

Get Book Here

Book Description
Simulation of brain neurons in real-time using biophysically-meaningful models is a pre-requisite for comprehensive understanding of how neurons process information and communicate with each other, in effect efficiently complementing in-vivo experiments. In spiking neural networks (SNNs), propagated information is not just encoded by the firing rate of each neuron in the network, as in artificial neural networks (ANNs), but, in addition, by amplitude, spike-train patterns, and the transfer rate. The high level of realism of SNNs and more significant computational and analytic capabilities in comparison with ANNs, however, limit the size of the realized networks. Consequently, the main challenge in building complex and biophysically-accurate SNNs is largely posed by the high computational and data transfer demands.Real-Time Multi-Chip Neural Network for Cognitive Systems presents novel real-time, reconfigurable, multi-chip SNN system architecture based on localized communication, which effectively reduces the communication cost to a linear growth. The system use double floating-point arithmetic for the most biologically accurate cell behavior simulation, and is flexible enough to offer an easy implementation of various neuron network topologies, cell communication schemes, as well as models and kinds of cells. The system offers a high run-time configurability, which reduces the need for resynthesizing the system. In addition, the simulator features configurable on- and off-chip communication latencies as well as neuron calculation latencies. All parts of the system are generated automatically based on the neuron interconnection scheme in use. The simulator allows exploration of different system configurations, e.g. the interconnection scheme between the neurons, the intracellular concentration of different chemical compounds (ions), which affect how action potentials are initiated and propagate.

Memristors for Neuromorphic Circuits and Artificial Intelligence Applications

Memristors for Neuromorphic Circuits and Artificial Intelligence Applications PDF Author: Jordi Suñé
Publisher: MDPI
ISBN: 3039285769
Category : Technology & Engineering
Languages : en
Pages : 244

Get Book Here

Book Description
Artificial Intelligence (AI) has found many applications in the past decade due to the ever increasing computing power. Artificial Neural Networks are inspired in the brain structure and consist in the interconnection of artificial neurons through artificial synapses. Training these systems requires huge amounts of data and, after the network is trained, it can recognize unforeseen data and provide useful information. The so-called Spiking Neural Networks behave similarly to how the brain functions and are very energy efficient. Up to this moment, both spiking and conventional neural networks have been implemented in software programs running on conventional computing units. However, this approach requires high computing power, a large physical space and is energy inefficient. Thus, there is an increasing interest in developing AI tools directly implemented in hardware. The first hardware demonstrations have been based on CMOS circuits for neurons and specific communication protocols for synapses. However, to further increase training speed and energy efficiency while decreasing system size, the combination of CMOS neurons with memristor synapses is being explored. The memristor is a resistor with memory which behaves similarly to biological synapses. This book explores the state-of-the-art of neuromorphic circuits implementing neural networks with memristors for AI applications.

Synaptic Plasticity for Neuromorphic Systems

Synaptic Plasticity for Neuromorphic Systems PDF Author: Christian Mayr
Publisher: Frontiers Media SA
ISBN: 2889198774
Category : Neurosciences. Biological psychiatry. Neuropsychiatry
Languages : en
Pages : 178

Get Book Here

Book Description
One of the most striking properties of biological systems is their ability to learn and adapt to ever changing environmental conditions, tasks and stimuli. It emerges from a number of different forms of plasticity, that change the properties of the computing substrate, mainly acting on the modification of the strength of synaptic connections that gate the flow of information across neurons. Plasticity is an essential ingredient for building artificial autonomous cognitive agents that can learn to reliably and meaningfully interact with the real world. For this reason, the neuromorphic community at large has put substantial effort in the design of different forms of plasticity and in putting them to practical use. These plasticity forms comprise, among others, Short Term Depression and Facilitation, Homeostasis, Spike Frequency Adaptation and diverse forms of Hebbian learning (e.g. Spike Timing Dependent Plasticity). This special research topic collects the most advanced developments in the design of the diverse forms of plasticity, from the single circuit to the system level, as well as their exploitation in the implementation of cognitive systems.

SpiNNaker - A Spiking Neural Network Architecture

SpiNNaker - A Spiking Neural Network Architecture PDF Author: Steve Furber
Publisher: NowOpen
ISBN: 9781680836523
Category :
Languages : en
Pages : 352

Get Book Here

Book Description
This books tells the story of the origins of the world's largest neuromorphic computing platform, its development and its deployment, and the immense software development effort that has gone into making it openly available and accessible to researchers and students the world over

Big-Data Analytics for Cloud, IoT and Cognitive Computing

Big-Data Analytics for Cloud, IoT and Cognitive Computing PDF Author: Kai Hwang
Publisher: John Wiley & Sons
ISBN: 1119247020
Category : Computers
Languages : en
Pages : 428

Get Book Here

Book Description
The definitive guide to successfully integrating social, mobile, Big-Data analytics, cloud and IoT principles and technologies The main goal of this book is to spur the development of effective big-data computing operations on smart clouds that are fully supported by IoT sensing, machine learning and analytics systems. To that end, the authors draw upon their original research and proven track record in the field to describe a practical approach integrating big-data theories, cloud design principles, Internet of Things (IoT) sensing, machine learning, data analytics and Hadoop and Spark programming. Part 1 focuses on data science, the roles of clouds and IoT devices and frameworks for big-data computing. Big data analytics and cognitive machine learning, as well as cloud architecture, IoT and cognitive systems are explored, and mobile cloud-IoT-interaction frameworks are illustrated with concrete system design examples. Part 2 is devoted to the principles of and algorithms for machine learning, data analytics and deep learning in big data applications. Part 3 concentrates on cloud programming software libraries from MapReduce to Hadoop, Spark and TensorFlow and describes business, educational, healthcare and social media applications for those tools. The first book describing a practical approach to integrating social, mobile, analytics, cloud and IoT (SMACT) principles and technologies Covers theory and computing techniques and technologies, making it suitable for use in both computer science and electrical engineering programs Offers an extremely well-informed vision of future intelligent and cognitive computing environments integrating SMACT technologies Fully illustrated throughout with examples, figures and approximately 150 problems to support and reinforce learning Features a companion website with an instructor manual and PowerPoint slides www.wiley.com/go/hwangIOT Big-Data Analytics for Cloud, IoT and Cognitive Computing satisfies the demand among university faculty and students for cutting-edge information on emerging intelligent and cognitive computing systems and technologies. Professionals working in data science, cloud computing and IoT applications will also find this book to be an extremely useful working resource.

Science Abstracts

Science Abstracts PDF Author:
Publisher:
ISBN:
Category : Electrical engineering
Languages : en
Pages : 1360

Get Book Here

Book Description


Closed-Loop Systems for Next-Generation Neuroprostheses

Closed-Loop Systems for Next-Generation Neuroprostheses PDF Author: Timothée Levi
Publisher: Frontiers Media SA
ISBN: 2889454665
Category :
Languages : en
Pages : 326

Get Book Here

Book Description
Millions of people worldwide are affected by neurological disorders which disrupt the connections within the brain and between brain and body causing impairments of primary functions and paralysis. Such a number is likely to increase in the next years and current assistive technology is yet limited. A possible response to such disabilities, offered by the neuroscience community, is given by Brain-Machine Interfaces (BMIs) and neuroprostheses. The latter field of research is highly multidisciplinary, since it involves very different and disperse scientific communities, making it fundamental to create connections and to join research efforts. Indeed, the design and development of neuroprosthetic devices span/involve different research topics such as: interfacing of neural systems at different levels of architectural complexity (from in vitro neuronal ensembles to human brain), bio-artificial interfaces for stimulation (e.g. micro-stimulation, DBS: Deep Brain Stimulation) and recording (e.g. EMG: Electromyography, EEG: Electroencephalography, LFP: Local Field Potential), innovative signal processing tools for coding and decoding of neural activity, biomimetic artificial Spiking Neural Networks (SNN) and neural network modeling. In order to develop functional communication with the nervous system and to create a new generation of neuroprostheses, the study of closed-loop systems is mandatory. It has been widely recognized that closed-loop neuroprosthetic systems achieve more favorable outcomes for users then equivalent open-loop devices. Improvements in task performance, usability, and embodiment have all been reported in systems utilizing some form of feedback. The bi-directional communication between living neurons and artificial devices is the main final goal of those studies. However, closed-loop systems are still uncommon in the literature, mostly due to requirement of multidisciplinary effort. Therefore, through eBook on closed-loop systems for next-generation neuroprostheses, we encourage an active discussion among neurobiologists, electrophysiologists, bioengineers, computational neuroscientists and neuromorphic engineers. This eBook aims to facilitate this process by ordering the 25 contributions of this research in which we highlighted in three different parts: (A) Optimization of different blocks composing the closed-loop system, (B) Systems for neuromodulation based on DBS, EMG and SNN and (C) Closed-loop BMIs for rehabilitation.

Augmentation of Brain Function: Facts, Fiction and Controversy

Augmentation of Brain Function: Facts, Fiction and Controversy PDF Author: Mikhail Lebedev
Publisher: Frontiers Media SA
ISBN: 2889456145
Category : Neurosciences. Biological psychiatry. Neuropsychiatry
Languages : en
Pages : 666

Get Book Here

Book Description
Volume I, entitled “Augmentation of Brain Functions: Brain-Machine Interfaces”, is a collection of articles on neuroprosthetic technologies that utilize brain-machine interfaces (BMIs). BMIs strive to augment the brain by linking neural activity, recorded invasively or noninvasively, to external devices, such as arm prostheses, exoskeletons that enable bipedal walking, means of communication and technologies that augment attention. In addition to many practical applications, BMIs provide useful research tools for basic science. Several articles cover challenges and controversies in this rapidly developing field, such as ways to improve information transfer rate. BMIs can be applied to the awake state of the brain and to the sleep state, as well. BMIs can augment action planning and decision making. Importantly, BMI operations evoke brain plasticity, which can have long-lasting effects. Advanced neural decoding algorithms that utilize optimal feedback controllers are key to the BMI performance. BMI approach can be combined with the other augmentation methods; such systems are called hybrid BMIs. Overall, it appears that BMI will lead to many powerful and practical brain-augmenting technologies in the future.

Neuromorphic Engineering Systems and Applications

Neuromorphic Engineering Systems and Applications PDF Author: André van Schaik
Publisher: Frontiers Media SA
ISBN: 288919454X
Category : Computational neuroscience
Languages : en
Pages : 183

Get Book Here

Book Description
Neuromorphic engineering has just reached its 25th year as a discipline. In the first two decades neuromorphic engineers focused on building models of sensors, such as silicon cochleas and retinas, and building blocks such as silicon neurons and synapses. These designs have honed our skills in implementing sensors and neural networks in VLSI using analog and mixed mode circuits. Over the last decade the address event representation has been used to interface devices and computers from different designers and even different groups. This facility has been essential for our ability to combine sensors, neural networks, and actuators into neuromorphic systems. More recently, several big projects have emerged to build very large scale neuromorphic systems. The Telluride Neuromorphic Engineering Workshop (since 1994) and the CapoCaccia Cognitive Neuromorphic Engineering Workshop (since 2009) have been instrumental not only in creating a strongly connected research community, but also in introducing different groups to each other’s hardware. Many neuromorphic systems are first created at one of these workshops. With this special research topic, we showcase the state-of-the-art in neuromorphic systems.

Artificial Neural Networks and Machine Learning – ICANN 2016

Artificial Neural Networks and Machine Learning – ICANN 2016 PDF Author: Alessandro E.P. Villa
Publisher: Springer
ISBN: 3319447785
Category : Computers
Languages : en
Pages : 585

Get Book Here

Book Description
The two volume set, LNCS 9886 + 9887, constitutes the proceedings of the 25th International Conference on Artificial Neural Networks, ICANN 2016, held in Barcelona, Spain, in September 2016. The 121 full papers included in this volume were carefully reviewed and selected from 227 submissions. They were organized in topical sections named: from neurons to networks; networks and dynamics; higher nervous functions; neuronal hardware; learning foundations; deep learning; classifications and forecasting; and recognition and navigation. There are 47 short paper abstracts that are included in the back matter of the volume.