Author: Richard Barry Bernstein
Publisher: Springer Science & Business Media
ISBN: 1461329132
Category : Science
Languages : en
Pages : 785
Book Description
The broad field of molecular collisions is one of considerable current interest, one in which there is a great deal of research activity, both experi mental and theoretical. This is probably because elastic, inelastic, and reactive intermolecular collisions are of central importance in many of the fundamental processes of chemistry and physics. One small area of this field, namely atom-molecule collisions, is now beginning to be "understood" from first principles. Although the more general subject of the collisions of polyatomic molecules is of great im portance and intrinsic interest, it is still too complex from the viewpoint of theoretical understanding. However, for atoms and simple molecules the essential theory is well developed, and computational methods are sufficiently advanced that calculations can now be favorably compared with experimental results. This "coming together" of the subject (and, incidentally, of physicists and chemists !), though still in an early stage, signals that the time is ripe for an appraisal and review of the theoretical basis of atom-molecule collisions. It is especially important for the experimentalist in the field to have a working knowledge of the theory and computational methods required to describe the experimentally observable behavior of the system. By now many of the alternative theoretical approaches and computational procedures have been tested and intercompared. More-or-Iess optimal methods for dealing with each aspect are emerging. In many cases working equations, even schematic algorithms, have been developed, with assumptions and caveats delineated.
Atom - Molecule Collision Theory
Author: Richard Barry Bernstein
Publisher: Springer Science & Business Media
ISBN: 1461329132
Category : Science
Languages : en
Pages : 785
Book Description
The broad field of molecular collisions is one of considerable current interest, one in which there is a great deal of research activity, both experi mental and theoretical. This is probably because elastic, inelastic, and reactive intermolecular collisions are of central importance in many of the fundamental processes of chemistry and physics. One small area of this field, namely atom-molecule collisions, is now beginning to be "understood" from first principles. Although the more general subject of the collisions of polyatomic molecules is of great im portance and intrinsic interest, it is still too complex from the viewpoint of theoretical understanding. However, for atoms and simple molecules the essential theory is well developed, and computational methods are sufficiently advanced that calculations can now be favorably compared with experimental results. This "coming together" of the subject (and, incidentally, of physicists and chemists !), though still in an early stage, signals that the time is ripe for an appraisal and review of the theoretical basis of atom-molecule collisions. It is especially important for the experimentalist in the field to have a working knowledge of the theory and computational methods required to describe the experimentally observable behavior of the system. By now many of the alternative theoretical approaches and computational procedures have been tested and intercompared. More-or-Iess optimal methods for dealing with each aspect are emerging. In many cases working equations, even schematic algorithms, have been developed, with assumptions and caveats delineated.
Publisher: Springer Science & Business Media
ISBN: 1461329132
Category : Science
Languages : en
Pages : 785
Book Description
The broad field of molecular collisions is one of considerable current interest, one in which there is a great deal of research activity, both experi mental and theoretical. This is probably because elastic, inelastic, and reactive intermolecular collisions are of central importance in many of the fundamental processes of chemistry and physics. One small area of this field, namely atom-molecule collisions, is now beginning to be "understood" from first principles. Although the more general subject of the collisions of polyatomic molecules is of great im portance and intrinsic interest, it is still too complex from the viewpoint of theoretical understanding. However, for atoms and simple molecules the essential theory is well developed, and computational methods are sufficiently advanced that calculations can now be favorably compared with experimental results. This "coming together" of the subject (and, incidentally, of physicists and chemists !), though still in an early stage, signals that the time is ripe for an appraisal and review of the theoretical basis of atom-molecule collisions. It is especially important for the experimentalist in the field to have a working knowledge of the theory and computational methods required to describe the experimentally observable behavior of the system. By now many of the alternative theoretical approaches and computational procedures have been tested and intercompared. More-or-Iess optimal methods for dealing with each aspect are emerging. In many cases working equations, even schematic algorithms, have been developed, with assumptions and caveats delineated.
Handbook of Nuclear Engineering
Author: Dan Gabriel Cacuci
Publisher: Springer Science & Business Media
ISBN: 0387981306
Category : Science
Languages : en
Pages : 3701
Book Description
This is an authoritative compilation of information regarding methods and data used in all phases of nuclear engineering. Addressing nuclear engineers and scientists at all levels, this book provides a condensed reference on nuclear engineering since 1958.
Publisher: Springer Science & Business Media
ISBN: 0387981306
Category : Science
Languages : en
Pages : 3701
Book Description
This is an authoritative compilation of information regarding methods and data used in all phases of nuclear engineering. Addressing nuclear engineers and scientists at all levels, this book provides a condensed reference on nuclear engineering since 1958.
Scattering Theory of Waves and Particles
Author: R.G. Newton
Publisher: Springer Science & Business Media
ISBN: 3642881289
Category : Science
Languages : en
Pages : 758
Book Description
Much progress has been made in scattering theory since the publication of the first edition of this book fifteen years ago, and it is time to update it. Needless to say, it was impossible to incorporate all areas of new develop ment. Since among the newer books on scattering theory there are three excellent volumes that treat the subject from a much more abstract mathe matical point of view (Lax and Phillips on electromagnetic scattering, Amrein, Jauch and Sinha, and Reed and Simon on quantum scattering), I have refrained from adding material concerning the abundant new mathe matical results on time-dependent formulations of scattering theory. The only exception is Dollard's beautiful "scattering into cones" method that connects the physically intuitive and mathematically clean wave-packet description to experimentally accessible scattering rates in a much more satisfactory manner than the older procedure. Areas that have been substantially augmented are the analysis of the three-dimensional Schrodinger equation for non central potentials (in Chapter 10), the general approach to multiparticle reaction theory (in Chapter 16), the specific treatment of three-particle scattering (in Chapter 17), and inverse scattering (in Chapter 20). The additions to Chapter 16 include an introduction to the two-Hilbert space approach, as well as a derivation of general scattering-rate formulas. Chapter 17 now contains a survey of various approaches to the solution of three-particle problems, as well as a discussion of the Efimov effect.
Publisher: Springer Science & Business Media
ISBN: 3642881289
Category : Science
Languages : en
Pages : 758
Book Description
Much progress has been made in scattering theory since the publication of the first edition of this book fifteen years ago, and it is time to update it. Needless to say, it was impossible to incorporate all areas of new develop ment. Since among the newer books on scattering theory there are three excellent volumes that treat the subject from a much more abstract mathe matical point of view (Lax and Phillips on electromagnetic scattering, Amrein, Jauch and Sinha, and Reed and Simon on quantum scattering), I have refrained from adding material concerning the abundant new mathe matical results on time-dependent formulations of scattering theory. The only exception is Dollard's beautiful "scattering into cones" method that connects the physically intuitive and mathematically clean wave-packet description to experimentally accessible scattering rates in a much more satisfactory manner than the older procedure. Areas that have been substantially augmented are the analysis of the three-dimensional Schrodinger equation for non central potentials (in Chapter 10), the general approach to multiparticle reaction theory (in Chapter 16), the specific treatment of three-particle scattering (in Chapter 17), and inverse scattering (in Chapter 20). The additions to Chapter 16 include an introduction to the two-Hilbert space approach, as well as a derivation of general scattering-rate formulas. Chapter 17 now contains a survey of various approaches to the solution of three-particle problems, as well as a discussion of the Efimov effect.
Recent Progress in Few-Body Physics
Author: N. A. Orr
Publisher: Springer Nature
ISBN: 3030323579
Category : Science
Languages : en
Pages : 968
Book Description
Few-body physics covers a rich and wide variety of phenomena, ranging from the very lowest energy scales of atomic and molecular physics to high-energy particle physics. The papers contained in the present volume provide an apercu of recent progress in the field from both the theoretical and experimental perspectives and are based on work presented at the “22nd International Conference on Few-Body Problems in Physics”. This book is geared towards academics and graduate students involved in the study of systems which present few-body characteristics and those interested in the related mathematical and computational techniques.
Publisher: Springer Nature
ISBN: 3030323579
Category : Science
Languages : en
Pages : 968
Book Description
Few-body physics covers a rich and wide variety of phenomena, ranging from the very lowest energy scales of atomic and molecular physics to high-energy particle physics. The papers contained in the present volume provide an apercu of recent progress in the field from both the theoretical and experimental perspectives and are based on work presented at the “22nd International Conference on Few-Body Problems in Physics”. This book is geared towards academics and graduate students involved in the study of systems which present few-body characteristics and those interested in the related mathematical and computational techniques.
Absorption and Scattering of Light by Small Particles
Author: Craig F. Bohren
Publisher: John Wiley & Sons
ISBN: 3527618163
Category : Science
Languages : en
Pages : 544
Book Description
Absorption and Scattering of Light by Small Particles Treating absorption and scattering in equal measure, this self-contained, interdisciplinary study examines and illustrates how small particles absorb and scatter light. The authors emphasize that any discussion of the optical behavior of small particles is inseparable from a full understanding of the optical behavior of the parent material-bulk matter. To divorce one concept from the other is to render any study on scattering theory seriously incomplete. Special features and important topics covered in this book include: * Classical theories of optical properties based on idealized models * Measurements for three representative materials: magnesium oxide, aluminum, and water * An extensive discussion of electromagnetic theory * Numerous exact and approximate solutions to various scattering problems * Examples and applications from physics, astrophysics, atmospheric physics, and biophysics * Some 500 references emphasizing work done since Kerker's 1969 work on scattering theory * Computer programs for calculating scattering by spheres, coated spheres, and infinite cylinders
Publisher: John Wiley & Sons
ISBN: 3527618163
Category : Science
Languages : en
Pages : 544
Book Description
Absorption and Scattering of Light by Small Particles Treating absorption and scattering in equal measure, this self-contained, interdisciplinary study examines and illustrates how small particles absorb and scatter light. The authors emphasize that any discussion of the optical behavior of small particles is inseparable from a full understanding of the optical behavior of the parent material-bulk matter. To divorce one concept from the other is to render any study on scattering theory seriously incomplete. Special features and important topics covered in this book include: * Classical theories of optical properties based on idealized models * Measurements for three representative materials: magnesium oxide, aluminum, and water * An extensive discussion of electromagnetic theory * Numerous exact and approximate solutions to various scattering problems * Examples and applications from physics, astrophysics, atmospheric physics, and biophysics * Some 500 references emphasizing work done since Kerker's 1969 work on scattering theory * Computer programs for calculating scattering by spheres, coated spheres, and infinite cylinders
Direct nuclear Reactions
Author: Norman Glendenning
Publisher: Elsevier
ISBN: 0323152376
Category : Science
Languages : en
Pages : 397
Book Description
Direct Nuclear Reactions deals with the theory of direct nuclear reactions, their microscopic aspects, and their effect on the motions of the individual nucleons. The principal results of the theory are described, with emphasis on the approximations involved to understand how well the theory can be expected to hold under specific experimental conditions. Applications to the analysis of experiments are also considered. This book consists of 19 chapters and begins by explaining the difference between direct and compound nuclear reactions. The reader is then introduced to the theory of plane waves, some results of scattering theory, and the phenomenological optical potential. The following chapters focus on form factors and their nuclear structure content; the basis of the optical potential as an effective interaction; reactions such as inelastic single- and two-nucleon transfer reactions; the effect of nuclear correlations; and the role of multiple-step reactions. The theory of inelastic scattering and the relationship between the effective and free interactions are also discussed, along with reactions between heavy ions and the polarizability of nuclear wave functions during a heavy-ion reaction. This monograph will be of interest to nuclear physicists.
Publisher: Elsevier
ISBN: 0323152376
Category : Science
Languages : en
Pages : 397
Book Description
Direct Nuclear Reactions deals with the theory of direct nuclear reactions, their microscopic aspects, and their effect on the motions of the individual nucleons. The principal results of the theory are described, with emphasis on the approximations involved to understand how well the theory can be expected to hold under specific experimental conditions. Applications to the analysis of experiments are also considered. This book consists of 19 chapters and begins by explaining the difference between direct and compound nuclear reactions. The reader is then introduced to the theory of plane waves, some results of scattering theory, and the phenomenological optical potential. The following chapters focus on form factors and their nuclear structure content; the basis of the optical potential as an effective interaction; reactions such as inelastic single- and two-nucleon transfer reactions; the effect of nuclear correlations; and the role of multiple-step reactions. The theory of inelastic scattering and the relationship between the effective and free interactions are also discussed, along with reactions between heavy ions and the polarizability of nuclear wave functions during a heavy-ion reaction. This monograph will be of interest to nuclear physicists.
Atlas of Neutron Resonances
Author: Said F. Mughabghab
Publisher: Elsevier
ISBN: 0080461069
Category : Science
Languages : en
Pages : 1373
Book Description
The Atlas of Neutron Resonances provides detailed information on neutron resonances, thermal neutron cross sections, and average resonance properties which are important to neutron physicist, astrophysicists, solid state physicists, reactor engineers, scientists involved in activation analysis, and evaluators of neutron cross sections. · Compilation and evaluation of the world's thermal neutron cross-sections and resonance parameters for neutron physicists, reactor engineers, and neutron evaluators.· Compilation and evaluation of coherent scattering lengths for solid state physicists and evaluators· Compilation and evaluation of average 30-keV capture cross sections for astrophysicists.· Nuclear level density parameters derived from average spacings of neutron resonances following a new approach (new feature for this edition).· Brief review of sub-threshold fission.· Comparisons of optical model predictions with neutron strength function data and scattering lengths.· Estimation of average E1 radiative widths on the basis of the generalized Landau-Fermi liquid model (a new feature for this edition).
Publisher: Elsevier
ISBN: 0080461069
Category : Science
Languages : en
Pages : 1373
Book Description
The Atlas of Neutron Resonances provides detailed information on neutron resonances, thermal neutron cross sections, and average resonance properties which are important to neutron physicist, astrophysicists, solid state physicists, reactor engineers, scientists involved in activation analysis, and evaluators of neutron cross sections. · Compilation and evaluation of the world's thermal neutron cross-sections and resonance parameters for neutron physicists, reactor engineers, and neutron evaluators.· Compilation and evaluation of coherent scattering lengths for solid state physicists and evaluators· Compilation and evaluation of average 30-keV capture cross sections for astrophysicists.· Nuclear level density parameters derived from average spacings of neutron resonances following a new approach (new feature for this edition).· Brief review of sub-threshold fission.· Comparisons of optical model predictions with neutron strength function data and scattering lengths.· Estimation of average E1 radiative widths on the basis of the generalized Landau-Fermi liquid model (a new feature for this edition).
Key Nuclear Reaction Experiments
Author: Hans Paetz gen. Schieck
Publisher:
ISBN: 9780750311755
Category : Nuclear physics
Languages : en
Pages : 0
Book Description
In this book the author charts the developments in nuclear physics since its inception around a century ago by reviewing the key experiments that helped drive and shape our understanding of the field, especially in the context of the wider developments in physics in the early 20th century. In addition to providing a path through the field and the crucial events it looks at how these experiments not only answered key questions at the time but presented new challenges to the contemporary perception of the nuclear and sub-atomic worlds and how they helped develop our present understanding of nuclear physics.
Publisher:
ISBN: 9780750311755
Category : Nuclear physics
Languages : en
Pages : 0
Book Description
In this book the author charts the developments in nuclear physics since its inception around a century ago by reviewing the key experiments that helped drive and shape our understanding of the field, especially in the context of the wider developments in physics in the early 20th century. In addition to providing a path through the field and the crucial events it looks at how these experiments not only answered key questions at the time but presented new challenges to the contemporary perception of the nuclear and sub-atomic worlds and how they helped develop our present understanding of nuclear physics.
Nuclear Science Abstracts
Author:
Publisher:
ISBN:
Category : Nuclear energy
Languages : en
Pages : 764
Book Description
Publisher:
ISBN:
Category : Nuclear energy
Languages : en
Pages : 764
Book Description
ERDA Energy Research Abstracts
Author: United States. Energy Research and Development Administration
Publisher:
ISBN:
Category : Medicine
Languages : en
Pages : 776
Book Description
Publisher:
ISBN:
Category : Medicine
Languages : en
Pages : 776
Book Description