Author: Stoĭcho Panchev
Publisher: Pergamon
ISBN:
Category : Mathematics
Languages : en
Pages : 466
Book Description
International Series of Monographs in Natural Philosophy, Volume 32: Random Functions and Turbulence focuses on the use of random functions as mathematical methods. The manuscript first offers information on the elements of the theory of random functions. Topics include determination of statistical moments by characteristic functions; functional transformations of random variables; multidimensional random variables with spherical symmetry; and random variables and distribution functions. The book then discusses random processes and random fields, including stationarity and ergodicity of random ...
Random Functions and Turbulence
Author: Stoĭcho Panchev
Publisher: Pergamon
ISBN:
Category : Mathematics
Languages : en
Pages : 466
Book Description
International Series of Monographs in Natural Philosophy, Volume 32: Random Functions and Turbulence focuses on the use of random functions as mathematical methods. The manuscript first offers information on the elements of the theory of random functions. Topics include determination of statistical moments by characteristic functions; functional transformations of random variables; multidimensional random variables with spherical symmetry; and random variables and distribution functions. The book then discusses random processes and random fields, including stationarity and ergodicity of random ...
Publisher: Pergamon
ISBN:
Category : Mathematics
Languages : en
Pages : 466
Book Description
International Series of Monographs in Natural Philosophy, Volume 32: Random Functions and Turbulence focuses on the use of random functions as mathematical methods. The manuscript first offers information on the elements of the theory of random functions. Topics include determination of statistical moments by characteristic functions; functional transformations of random variables; multidimensional random variables with spherical symmetry; and random variables and distribution functions. The book then discusses random processes and random fields, including stationarity and ergodicity of random ...
Stochastic Tools in Turbulence
Author: John L. Lumley
Publisher: Courier Corporation
ISBN: 0486462706
Category : Science
Languages : en
Pages : 210
Book Description
This accessible treatment offers the mathematical tools for describing and solving problems related to stochastic vector fields. Advanced undergraduates and graduate students will find its use of generalized functions a relatively simple method of resolving mathematical questions. It will prove a valuable reference for applied mathematicians and professionals in the fields of aerospace, chemical, civil, and nuclear engineering. The author, Professor Emeritus of Engineering at Cornell University, starts with a survey of probability distributions and densities and proceeds to examinations of moments, characteristic functions, and the Gaussian distribution; random functions; and random processes in more dimensions. Extensive appendixes—which include information on Fourier transforms, tensors, generalized functions, and invariant theory—contribute toward making this volume mathematically self-contained.
Publisher: Courier Corporation
ISBN: 0486462706
Category : Science
Languages : en
Pages : 210
Book Description
This accessible treatment offers the mathematical tools for describing and solving problems related to stochastic vector fields. Advanced undergraduates and graduate students will find its use of generalized functions a relatively simple method of resolving mathematical questions. It will prove a valuable reference for applied mathematicians and professionals in the fields of aerospace, chemical, civil, and nuclear engineering. The author, Professor Emeritus of Engineering at Cornell University, starts with a survey of probability distributions and densities and proceeds to examinations of moments, characteristic functions, and the Gaussian distribution; random functions; and random processes in more dimensions. Extensive appendixes—which include information on Fourier transforms, tensors, generalized functions, and invariant theory—contribute toward making this volume mathematically self-contained.
Turbulence and Random Processes in Fluid Mechanics
Author: M. T. Landahl
Publisher: Cambridge University Press
ISBN: 9780521422130
Category : Mathematics
Languages : en
Pages : 184
Book Description
Fluid flow turbulence is a phenomenon of great importance in many fields of engineering and science.
Publisher: Cambridge University Press
ISBN: 9780521422130
Category : Mathematics
Languages : en
Pages : 184
Book Description
Fluid flow turbulence is a phenomenon of great importance in many fields of engineering and science.
The Theory of Homogeneous Turbulence
Author: G. K. Batchelor
Publisher: Cambridge University Press
ISBN: 9780521041171
Category : Mathematics
Languages : en
Pages : 216
Book Description
This is a reissue of Professor Batchelor's text on the theory of turbulent motion, which was first published by Cambridge Unviersity Press in 1953. It continues to be widely referred to in the professional literature of fluid mechanics, but has not been available for several years. This classic account includes an introduction to the study of homogeneous turbulence, including its mathematic representation and kinematics. Linear problems, such as the randomly-perturbed harmonic oscillator and turbulent flow through a wire gauze, are then treated. The author also presents the general dynamics of decay, universal equilibrium theory, and the decay of energy-containing eddies. There is a renewed interest in turbulent motion, which finds applications in atmospheric physics, fluid mechanics, astrophysics, and planetary science.
Publisher: Cambridge University Press
ISBN: 9780521041171
Category : Mathematics
Languages : en
Pages : 216
Book Description
This is a reissue of Professor Batchelor's text on the theory of turbulent motion, which was first published by Cambridge Unviersity Press in 1953. It continues to be widely referred to in the professional literature of fluid mechanics, but has not been available for several years. This classic account includes an introduction to the study of homogeneous turbulence, including its mathematic representation and kinematics. Linear problems, such as the randomly-perturbed harmonic oscillator and turbulent flow through a wire gauze, are then treated. The author also presents the general dynamics of decay, universal equilibrium theory, and the decay of energy-containing eddies. There is a renewed interest in turbulent motion, which finds applications in atmospheric physics, fluid mechanics, astrophysics, and planetary science.
Mathematics of Two-Dimensional Turbulence
Author: Sergei Kuksin
Publisher: Cambridge University Press
ISBN: 113957695X
Category : Mathematics
Languages : en
Pages : 337
Book Description
This book is dedicated to the mathematical study of two-dimensional statistical hydrodynamics and turbulence, described by the 2D Navier–Stokes system with a random force. The authors' main goal is to justify the statistical properties of a fluid's velocity field u(t,x) that physicists assume in their work. They rigorously prove that u(t,x) converges, as time grows, to a statistical equilibrium, independent of initial data. They use this to study ergodic properties of u(t,x) – proving, in particular, that observables f(u(t,.)) satisfy the strong law of large numbers and central limit theorem. They also discuss the inviscid limit when viscosity goes to zero, normalising the force so that the energy of solutions stays constant, while their Reynolds numbers grow to infinity. They show that then the statistical equilibria converge to invariant measures of the 2D Euler equation and study these measures. The methods apply to other nonlinear PDEs perturbed by random forces.
Publisher: Cambridge University Press
ISBN: 113957695X
Category : Mathematics
Languages : en
Pages : 337
Book Description
This book is dedicated to the mathematical study of two-dimensional statistical hydrodynamics and turbulence, described by the 2D Navier–Stokes system with a random force. The authors' main goal is to justify the statistical properties of a fluid's velocity field u(t,x) that physicists assume in their work. They rigorously prove that u(t,x) converges, as time grows, to a statistical equilibrium, independent of initial data. They use this to study ergodic properties of u(t,x) – proving, in particular, that observables f(u(t,.)) satisfy the strong law of large numbers and central limit theorem. They also discuss the inviscid limit when viscosity goes to zero, normalising the force so that the energy of solutions stays constant, while their Reynolds numbers grow to infinity. They show that then the statistical equilibria converge to invariant measures of the 2D Euler equation and study these measures. The methods apply to other nonlinear PDEs perturbed by random forces.
NASA Technical Translation
Author:
Publisher:
ISBN:
Category : Aeronautics
Languages : en
Pages : 628
Book Description
Publisher:
ISBN:
Category : Aeronautics
Languages : en
Pages : 628
Book Description
Technical Note - National Advisory Committee for Aeronautics
Author: United States. National Advisory Committee for Aeronautics
Publisher:
ISBN:
Category : Aeronautics
Languages : en
Pages : 1066
Book Description
Publisher:
ISBN:
Category : Aeronautics
Languages : en
Pages : 1066
Book Description
Wave Propagation and Scattering in Random Media
Author: Akira Ishimaru
Publisher: Elsevier
ISBN: 0323158323
Category : Science
Languages : en
Pages : 272
Book Description
Wave Propagation and Scattering in Random Media, Volume 1: Single Scattering and Transport Theory presents the fundamental formulations of wave propagation and scattering in random media in a unified and systematic manner, as well as useful approximation techniques applicable to a variety of different situations. The emphasis is on single scattering theory and transport theory. The reader is introduced to the fundamental concepts and useful results of the statistical wave propagation theory. This volume is comprised of 13 chapters, organized around three themes: waves in random scatterers, waves in random continua, and rough surface scattering. The first part deals with the scattering and propagation of waves in a tenuous distribution of scatterers, using the single scattering theory and its slight extension to explain the fundamentals of wave fluctuations in random media without undue mathematical complexities. Many practical problems of wave propagation and scattering in the atmosphere, oceans, and other random media are discussed. The second part examines transport theory, also known as the theory of radiative transfer, and includes chapters on wave propagation in random particles, isotropic scattering, and the plane-parallel problem. This monograph is intended for engineers and scientists interested in optical, acoustic, and microwave propagation and scattering in atmospheres, oceans, and biological media.
Publisher: Elsevier
ISBN: 0323158323
Category : Science
Languages : en
Pages : 272
Book Description
Wave Propagation and Scattering in Random Media, Volume 1: Single Scattering and Transport Theory presents the fundamental formulations of wave propagation and scattering in random media in a unified and systematic manner, as well as useful approximation techniques applicable to a variety of different situations. The emphasis is on single scattering theory and transport theory. The reader is introduced to the fundamental concepts and useful results of the statistical wave propagation theory. This volume is comprised of 13 chapters, organized around three themes: waves in random scatterers, waves in random continua, and rough surface scattering. The first part deals with the scattering and propagation of waves in a tenuous distribution of scatterers, using the single scattering theory and its slight extension to explain the fundamentals of wave fluctuations in random media without undue mathematical complexities. Many practical problems of wave propagation and scattering in the atmosphere, oceans, and other random media are discussed. The second part examines transport theory, also known as the theory of radiative transfer, and includes chapters on wave propagation in random particles, isotropic scattering, and the plane-parallel problem. This monograph is intended for engineers and scientists interested in optical, acoustic, and microwave propagation and scattering in atmospheres, oceans, and biological media.
Theories of Turbulence
Author: Martin Oberlack
Publisher: Springer
ISBN: 3709125642
Category : Science
Languages : en
Pages : 377
Book Description
The term "turbulence” is used for a large variety of dynamical phenomena of fluids in motion whenever the details of the flow appear to be random and average properties are of primary interest. Just as wide ranging are the theoretical methods that have been applied towards a better understanding of fluid turbulence. In this book a number of these methods are described and applied to a broad range of problems from the transition to turbulence to asymptotic turbulence when the inertial part of the spectrum is fully developed. Statistical as well as nonstatistical treatments are presented, but a complete coverage of the subject is not attempted. The book will be of interest to scientists and engineers who wish to familiarize themselves with modern developments in theories of turbulence. The fact that the properties of turbulent fluid flow are addressed from very different points of view makes this volume rather unique among presently available books on turbulence.
Publisher: Springer
ISBN: 3709125642
Category : Science
Languages : en
Pages : 377
Book Description
The term "turbulence” is used for a large variety of dynamical phenomena of fluids in motion whenever the details of the flow appear to be random and average properties are of primary interest. Just as wide ranging are the theoretical methods that have been applied towards a better understanding of fluid turbulence. In this book a number of these methods are described and applied to a broad range of problems from the transition to turbulence to asymptotic turbulence when the inertial part of the spectrum is fully developed. Statistical as well as nonstatistical treatments are presented, but a complete coverage of the subject is not attempted. The book will be of interest to scientists and engineers who wish to familiarize themselves with modern developments in theories of turbulence. The fact that the properties of turbulent fluid flow are addressed from very different points of view makes this volume rather unique among presently available books on turbulence.
New Perspectives in Turbulence
Author: Lawrence Sirovich
Publisher: Springer Science & Business Media
ISBN: 1461231566
Category : Science
Languages : en
Pages : 375
Book Description
This collection of articles has its origin in a meeting which took place June 12-15, 1989, on the grounds of Salve Regina College in Newport, Rhode Island. The meeting was blessed by beautiful, balmy weather and an idyllic setting. The sessions themselves took place in Ochre Court, one of the elegant and stately old summer cottages for which Newport is acclaimed. Lectures were presented in the grand ballroom overlooking the famous Cliff Walk and Block Island Sound. Counter to general belief, the pleasant surroundings did not appear to encourage truancy or in any other way diminish the quality of the meeting. On the contrary, for the four days of the meeting there was a high level of excitement and optimism about the new perspectives in turbulence, a tone that carried over to lively dinner and evening discussions. The participants represented a broad range of backgrounds, extending from pure mathemat ics to experimental engineering. A dialogue began with the first speakers which cut across the boundaries and gave to the meeting a mood of unity which persisted.
Publisher: Springer Science & Business Media
ISBN: 1461231566
Category : Science
Languages : en
Pages : 375
Book Description
This collection of articles has its origin in a meeting which took place June 12-15, 1989, on the grounds of Salve Regina College in Newport, Rhode Island. The meeting was blessed by beautiful, balmy weather and an idyllic setting. The sessions themselves took place in Ochre Court, one of the elegant and stately old summer cottages for which Newport is acclaimed. Lectures were presented in the grand ballroom overlooking the famous Cliff Walk and Block Island Sound. Counter to general belief, the pleasant surroundings did not appear to encourage truancy or in any other way diminish the quality of the meeting. On the contrary, for the four days of the meeting there was a high level of excitement and optimism about the new perspectives in turbulence, a tone that carried over to lively dinner and evening discussions. The participants represented a broad range of backgrounds, extending from pure mathemat ics to experimental engineering. A dialogue began with the first speakers which cut across the boundaries and gave to the meeting a mood of unity which persisted.