Author: Xavier Guyon
Publisher: Springer Science & Business Media
ISBN: 9780387944289
Category : Mathematics
Languages : en
Pages : 294
Book Description
The theory of spatial models over lattices, or random fields as they are known, has developed significantly over recent years. This book provides a graduate-level introduction to the subject which assumes only a basic knowledge of probability and statistics, finite Markov chains, and the spectral theory of second-order processes. A particular strength of this book is its emphasis on examples - both to motivate the theory which is being developed, and to demonstrate the applications which range from statistical mechanics to image analysis and from statistics to stochastic algorithms.
Random Fields on a Network
Author: Xavier Guyon
Publisher: Springer Science & Business Media
ISBN: 9780387944289
Category : Mathematics
Languages : en
Pages : 294
Book Description
The theory of spatial models over lattices, or random fields as they are known, has developed significantly over recent years. This book provides a graduate-level introduction to the subject which assumes only a basic knowledge of probability and statistics, finite Markov chains, and the spectral theory of second-order processes. A particular strength of this book is its emphasis on examples - both to motivate the theory which is being developed, and to demonstrate the applications which range from statistical mechanics to image analysis and from statistics to stochastic algorithms.
Publisher: Springer Science & Business Media
ISBN: 9780387944289
Category : Mathematics
Languages : en
Pages : 294
Book Description
The theory of spatial models over lattices, or random fields as they are known, has developed significantly over recent years. This book provides a graduate-level introduction to the subject which assumes only a basic knowledge of probability and statistics, finite Markov chains, and the spectral theory of second-order processes. A particular strength of this book is its emphasis on examples - both to motivate the theory which is being developed, and to demonstrate the applications which range from statistical mechanics to image analysis and from statistics to stochastic algorithms.
Markov Random Field Modeling in Image Analysis
Author: Stan Z. Li
Publisher: Springer Science & Business Media
ISBN: 1848002793
Category : Computers
Languages : en
Pages : 372
Book Description
Markov random field (MRF) theory provides a basis for modeling contextual constraints in visual processing and interpretation. It enables us to develop optimal vision algorithms systematically when used with optimization principles. This book presents a comprehensive study on the use of MRFs for solving computer vision problems. Various vision models are presented in a unified framework, including image restoration and reconstruction, edge and region segmentation, texture, stereo and motion, object matching and recognition, and pose estimation. This third edition includes the most recent advances and has new and expanded sections on topics such as: Bayesian Network; Discriminative Random Fields; Strong Random Fields; Spatial-Temporal Models; Learning MRF for Classification. This book is an excellent reference for researchers working in computer vision, image processing, statistical pattern recognition and applications of MRFs. It is also suitable as a text for advanced courses in these areas.
Publisher: Springer Science & Business Media
ISBN: 1848002793
Category : Computers
Languages : en
Pages : 372
Book Description
Markov random field (MRF) theory provides a basis for modeling contextual constraints in visual processing and interpretation. It enables us to develop optimal vision algorithms systematically when used with optimization principles. This book presents a comprehensive study on the use of MRFs for solving computer vision problems. Various vision models are presented in a unified framework, including image restoration and reconstruction, edge and region segmentation, texture, stereo and motion, object matching and recognition, and pose estimation. This third edition includes the most recent advances and has new and expanded sections on topics such as: Bayesian Network; Discriminative Random Fields; Strong Random Fields; Spatial-Temporal Models; Learning MRF for Classification. This book is an excellent reference for researchers working in computer vision, image processing, statistical pattern recognition and applications of MRFs. It is also suitable as a text for advanced courses in these areas.
Hybrid Random Fields
Author: Antonino Freno
Publisher: Springer Science & Business Media
ISBN: 3642203086
Category : Technology & Engineering
Languages : en
Pages : 217
Book Description
This book presents an exciting new synthesis of directed and undirected, discrete and continuous graphical models. Combining elements of Bayesian networks and Markov random fields, the newly introduced hybrid random fields are an interesting approach to get the best of both these worlds, with an added promise of modularity and scalability. The authors have written an enjoyable book---rigorous in the treatment of the mathematical background, but also enlivened by interesting and original historical and philosophical perspectives. -- Manfred Jaeger, Aalborg Universitet The book not only marks an effective direction of investigation with significant experimental advances, but it is also---and perhaps primarily---a guide for the reader through an original trip in the space of probabilistic modeling. While digesting the book, one is enriched with a very open view of the field, with full of stimulating connections. [...] Everyone specifically interested in Bayesian networks and Markov random fields should not miss it. -- Marco Gori, Università degli Studi di Siena Graphical models are sometimes regarded---incorrectly---as an impractical approach to machine learning, assuming that they only work well for low-dimensional applications and discrete-valued domains. While guiding the reader through the major achievements of this research area in a technically detailed yet accessible way, the book is concerned with the presentation and thorough (mathematical and experimental) investigation of a novel paradigm for probabilistic graphical modeling, the hybrid random field. This model subsumes and extends both Bayesian networks and Markov random fields. Moreover, it comes with well-defined learning algorithms, both for discrete and continuous-valued domains, which fit the needs of real-world applications involving large-scale, high-dimensional data.
Publisher: Springer Science & Business Media
ISBN: 3642203086
Category : Technology & Engineering
Languages : en
Pages : 217
Book Description
This book presents an exciting new synthesis of directed and undirected, discrete and continuous graphical models. Combining elements of Bayesian networks and Markov random fields, the newly introduced hybrid random fields are an interesting approach to get the best of both these worlds, with an added promise of modularity and scalability. The authors have written an enjoyable book---rigorous in the treatment of the mathematical background, but also enlivened by interesting and original historical and philosophical perspectives. -- Manfred Jaeger, Aalborg Universitet The book not only marks an effective direction of investigation with significant experimental advances, but it is also---and perhaps primarily---a guide for the reader through an original trip in the space of probabilistic modeling. While digesting the book, one is enriched with a very open view of the field, with full of stimulating connections. [...] Everyone specifically interested in Bayesian networks and Markov random fields should not miss it. -- Marco Gori, Università degli Studi di Siena Graphical models are sometimes regarded---incorrectly---as an impractical approach to machine learning, assuming that they only work well for low-dimensional applications and discrete-valued domains. While guiding the reader through the major achievements of this research area in a technically detailed yet accessible way, the book is concerned with the presentation and thorough (mathematical and experimental) investigation of a novel paradigm for probabilistic graphical modeling, the hybrid random field. This model subsumes and extends both Bayesian networks and Markov random fields. Moreover, it comes with well-defined learning algorithms, both for discrete and continuous-valued domains, which fit the needs of real-world applications involving large-scale, high-dimensional data.
Collecting Spatial Data
Author: Werner G. Müller
Publisher: Springer Science & Business Media
ISBN: 3540311750
Category : Business & Economics
Languages : en
Pages : 250
Book Description
The book is concerned with the statistical theory for locating spatial sensors. It bridges the gap between spatial statistics and optimum design theory. After introductions to those two fields the topics of exploratory designs and designs for spatial trend and variogram estimation are treated. Special attention is devoted to describing new methodologies to cope with the problem of correlated observations.
Publisher: Springer Science & Business Media
ISBN: 3540311750
Category : Business & Economics
Languages : en
Pages : 250
Book Description
The book is concerned with the statistical theory for locating spatial sensors. It bridges the gap between spatial statistics and optimum design theory. After introductions to those two fields the topics of exploratory designs and designs for spatial trend and variogram estimation are treated. Special attention is devoted to describing new methodologies to cope with the problem of correlated observations.
Markov Random Field Modeling in Computer Vision
Author: S.Z. Li
Publisher: Springer Science & Business Media
ISBN: 4431669337
Category : Computers
Languages : en
Pages : 274
Book Description
Markov random field (MRF) modeling provides a basis for the characterization of contextual constraints on visual interpretation and enables us to develop optimal vision algorithms systematically based on sound principles. This book presents a comprehensive study on using MRFs to solve computer vision problems, covering the following parts essential to the subject: introduction to fundamental theories, formulations of various vision models in the MRF framework, MRF parameter estimation, and optimization algorithms. Various MRF vision models are presented in a unified form, including image restoration and reconstruction, edge and region segmentation, texture, stereo and motion, object matching and recognition, and pose estimation. This book is an excellent reference for researchers working in computer vision, image processing, pattern recognition and applications of MRFs. It is also suitable as a text for advanced courses in the subject.
Publisher: Springer Science & Business Media
ISBN: 4431669337
Category : Computers
Languages : en
Pages : 274
Book Description
Markov random field (MRF) modeling provides a basis for the characterization of contextual constraints on visual interpretation and enables us to develop optimal vision algorithms systematically based on sound principles. This book presents a comprehensive study on using MRFs to solve computer vision problems, covering the following parts essential to the subject: introduction to fundamental theories, formulations of various vision models in the MRF framework, MRF parameter estimation, and optimization algorithms. Various MRF vision models are presented in a unified form, including image restoration and reconstruction, edge and region segmentation, texture, stereo and motion, object matching and recognition, and pose estimation. This book is an excellent reference for researchers working in computer vision, image processing, pattern recognition and applications of MRFs. It is also suitable as a text for advanced courses in the subject.
Markov Random Field
Author: Fouad Sabry
Publisher: One Billion Knowledgeable
ISBN:
Category : Computers
Languages : en
Pages : 101
Book Description
What is Markov Random Field In the domain of physics and probability, a Markov random field (MRF), Markov network or undirected graphical model is a set of random variables having a Markov property described by an undirected graph. In other words, a random field is said to be a Markov random field if it satisfies Markov properties. The concept originates from the Sherrington-Kirkpatrick model. How you will benefit (I) Insights, and validations about the following topics: Chapter 1: Markov random field Chapter 2: Multivariate random variable Chapter 3: Hidden Markov model Chapter 4: Bayesian network Chapter 5: Graphical model Chapter 6: Random field Chapter 7: Belief propagation Chapter 8: Factor graph Chapter 9: Conditional random field Chapter 10: Hammersley-Clifford theorem (II) Answering the public top questions about markov random field. (III) Real world examples for the usage of markov random field in many fields. Who this book is for Professionals, undergraduate and graduate students, enthusiasts, hobbyists, and those who want to go beyond basic knowledge or information for any kind of Markov Random Field.
Publisher: One Billion Knowledgeable
ISBN:
Category : Computers
Languages : en
Pages : 101
Book Description
What is Markov Random Field In the domain of physics and probability, a Markov random field (MRF), Markov network or undirected graphical model is a set of random variables having a Markov property described by an undirected graph. In other words, a random field is said to be a Markov random field if it satisfies Markov properties. The concept originates from the Sherrington-Kirkpatrick model. How you will benefit (I) Insights, and validations about the following topics: Chapter 1: Markov random field Chapter 2: Multivariate random variable Chapter 3: Hidden Markov model Chapter 4: Bayesian network Chapter 5: Graphical model Chapter 6: Random field Chapter 7: Belief propagation Chapter 8: Factor graph Chapter 9: Conditional random field Chapter 10: Hammersley-Clifford theorem (II) Answering the public top questions about markov random field. (III) Real world examples for the usage of markov random field in many fields. Who this book is for Professionals, undergraduate and graduate students, enthusiasts, hobbyists, and those who want to go beyond basic knowledge or information for any kind of Markov Random Field.
Random Fields for Spatial Data Modeling
Author: Dionissios T. Hristopulos
Publisher: Springer Nature
ISBN: 9402419187
Category : Science
Languages : en
Pages : 884
Book Description
This book provides an inter-disciplinary introduction to the theory of random fields and its applications. Spatial models and spatial data analysis are integral parts of many scientific and engineering disciplines. Random fields provide a general theoretical framework for the development of spatial models and their applications in data analysis. The contents of the book include topics from classical statistics and random field theory (regression models, Gaussian random fields, stationarity, correlation functions) spatial statistics (variogram estimation, model inference, kriging-based prediction) and statistical physics (fractals, Ising model, simulated annealing, maximum entropy, functional integral representations, perturbation and variational methods). The book also explores links between random fields, Gaussian processes and neural networks used in machine learning. Connections with applied mathematics are highlighted by means of models based on stochastic partial differential equations. An interlude on autoregressive time series provides useful lower-dimensional analogies and a connection with the classical linear harmonic oscillator. Other chapters focus on non-Gaussian random fields and stochastic simulation methods. The book also presents results based on the author’s research on Spartan random fields that were inspired by statistical field theories originating in physics. The equivalence of the one-dimensional Spartan random field model with the classical, linear, damped harmonic oscillator driven by white noise is highlighted. Ideas with potentially significant computational gains for the processing of big spatial data are presented and discussed. The final chapter concludes with a description of the Karhunen-Loève expansion of the Spartan model. The book will appeal to engineers, physicists, and geoscientists whose research involves spatial models or spatial data analysis. Anyone with background in probability and statistics can read at least parts of the book. Some chapters will be easier to understand by readers familiar with differential equations and Fourier transforms.
Publisher: Springer Nature
ISBN: 9402419187
Category : Science
Languages : en
Pages : 884
Book Description
This book provides an inter-disciplinary introduction to the theory of random fields and its applications. Spatial models and spatial data analysis are integral parts of many scientific and engineering disciplines. Random fields provide a general theoretical framework for the development of spatial models and their applications in data analysis. The contents of the book include topics from classical statistics and random field theory (regression models, Gaussian random fields, stationarity, correlation functions) spatial statistics (variogram estimation, model inference, kriging-based prediction) and statistical physics (fractals, Ising model, simulated annealing, maximum entropy, functional integral representations, perturbation and variational methods). The book also explores links between random fields, Gaussian processes and neural networks used in machine learning. Connections with applied mathematics are highlighted by means of models based on stochastic partial differential equations. An interlude on autoregressive time series provides useful lower-dimensional analogies and a connection with the classical linear harmonic oscillator. Other chapters focus on non-Gaussian random fields and stochastic simulation methods. The book also presents results based on the author’s research on Spartan random fields that were inspired by statistical field theories originating in physics. The equivalence of the one-dimensional Spartan random field model with the classical, linear, damped harmonic oscillator driven by white noise is highlighted. Ideas with potentially significant computational gains for the processing of big spatial data are presented and discussed. The final chapter concludes with a description of the Karhunen-Loève expansion of the Spartan model. The book will appeal to engineers, physicists, and geoscientists whose research involves spatial models or spatial data analysis. Anyone with background in probability and statistics can read at least parts of the book. Some chapters will be easier to understand by readers familiar with differential equations and Fourier transforms.
An Introduction to Conditional Random Fields
Author: Charles Sutton
Publisher: Now Pub
ISBN: 9781601985729
Category : Computers
Languages : en
Pages : 120
Book Description
An Introduction to Conditional Random Fields provides a comprehensive tutorial aimed at application-oriented practitioners seeking to apply CRFs. The monograph does not assume previous knowledge of graphical modeling, and so is intended to be useful to practitioners in a wide variety of fields.
Publisher: Now Pub
ISBN: 9781601985729
Category : Computers
Languages : en
Pages : 120
Book Description
An Introduction to Conditional Random Fields provides a comprehensive tutorial aimed at application-oriented practitioners seeking to apply CRFs. The monograph does not assume previous knowledge of graphical modeling, and so is intended to be useful to practitioners in a wide variety of fields.
Theory of Spatial Statistics
Author: M.N.M. van Lieshout
Publisher: CRC Press
ISBN: 0429627033
Category : Mathematics
Languages : en
Pages : 221
Book Description
Theory of Spatial Statistics: A Concise Introduction presents the most important models used in spatial statistics, including random fields and point processes, from a rigorous mathematical point of view and shows how to carry out statistical inference. It contains full proofs, real-life examples and theoretical exercises. Solutions to the latter are available in an appendix. Assuming maturity in probability and statistics, these concise lecture notes are self-contained and cover enough material for a semester course. They may also serve as a reference book for researchers. Features * Presents the mathematical foundations of spatial statistics. * Contains worked examples from mining, disease mapping, forestry, soil and environmental science, and criminology. * Gives pointers to the literature to facilitate further study. * Provides example code in R to encourage the student to experiment. * Offers exercises and their solutions to test and deepen understanding. The book is suitable for postgraduate and advanced undergraduate students in mathematics and statistics.
Publisher: CRC Press
ISBN: 0429627033
Category : Mathematics
Languages : en
Pages : 221
Book Description
Theory of Spatial Statistics: A Concise Introduction presents the most important models used in spatial statistics, including random fields and point processes, from a rigorous mathematical point of view and shows how to carry out statistical inference. It contains full proofs, real-life examples and theoretical exercises. Solutions to the latter are available in an appendix. Assuming maturity in probability and statistics, these concise lecture notes are self-contained and cover enough material for a semester course. They may also serve as a reference book for researchers. Features * Presents the mathematical foundations of spatial statistics. * Contains worked examples from mining, disease mapping, forestry, soil and environmental science, and criminology. * Gives pointers to the literature to facilitate further study. * Provides example code in R to encourage the student to experiment. * Offers exercises and their solutions to test and deepen understanding. The book is suitable for postgraduate and advanced undergraduate students in mathematics and statistics.
Random Networks for Communication
Author: Massimo Franceschetti
Publisher: Cambridge University Press
ISBN: 9780521854429
Category : Mathematics
Languages : en
Pages : 216
Book Description
When is a random network (almost) connected? How much information can it carry? How can you find a particular destination within the network? And how do you approach these questions - and others - when the network is random? The analysis of communication networks requires a fascinating synthesis of random graph theory, stochastic geometry and percolation theory to provide models for both structure and information flow. This book is the first comprehensive introduction for graduate students and scientists to techniques and problems in the field of spatial random networks. The selection of material is driven by applications arising in engineering, and the treatment is both readable and mathematically rigorous. Though mainly concerned with information-flow-related questions motivated by wireless data networks, the models developed are also of interest in a broader context, ranging from engineering to social networks, biology, and physics.
Publisher: Cambridge University Press
ISBN: 9780521854429
Category : Mathematics
Languages : en
Pages : 216
Book Description
When is a random network (almost) connected? How much information can it carry? How can you find a particular destination within the network? And how do you approach these questions - and others - when the network is random? The analysis of communication networks requires a fascinating synthesis of random graph theory, stochastic geometry and percolation theory to provide models for both structure and information flow. This book is the first comprehensive introduction for graduate students and scientists to techniques and problems in the field of spatial random networks. The selection of material is driven by applications arising in engineering, and the treatment is both readable and mathematically rigorous. Though mainly concerned with information-flow-related questions motivated by wireless data networks, the models developed are also of interest in a broader context, ranging from engineering to social networks, biology, and physics.