Author: JANARDHAN KADARI
Publisher: Shashwat Publication
ISBN: 9395125136
Category : Computers
Languages : en
Pages : 204
Book Description
R is a Statistcal programming language. R is Free and open source. R is an interpreted language not a compiled one. The R programming environment contains the range of tools for parallel computing, machine and deep learning and for working with big Data, including Torch and Tensar flow facilitating construction and implementation of neural networks. The Bioconductor repository contains over a thousand of software packages written in R for analyzing data sets from CDNA microarrays to copy-number variation and epigenomics (Robert Gentleman-Sorin Draghicia). Due to Data Handling and Modeling capabilities and its flexibility, R is becoming the most widely used software in bioinformatics. The R program is built from a variety of packages. These packages are libraries of commands. The Packages are available from the CRAN website. The current R is the result of a collaborative effort of the R core Group. R has many functions for statistical analysis and graphics. R has an effective data handling and storage facility. R provides operators for calculation on arrays, vectors, lists and matrices. This Book Covers all these with suitable examples. R has a collection of tools for data analysis. Keeping in view the Beginners apprehensions the Book provides the Salient Features of Descriptive Statistics & Covers the specific R tools for Statistical analysis. Throughout the Book examples are accompanied by R commands for easy reference. This Book Covers data handling, graphics, and a wide range of Statistical techniques. The Book would be of immense help to basic sciences, Engineering, Business Statistics, medicine streams, Biotechnology, Pharma, Bioinformatics, Genetics and Epidemiology.
R - FOR BASIC AND APPLIED SCIENCES
Author: JANARDHAN KADARI
Publisher: Shashwat Publication
ISBN: 9395125136
Category : Computers
Languages : en
Pages : 204
Book Description
R is a Statistcal programming language. R is Free and open source. R is an interpreted language not a compiled one. The R programming environment contains the range of tools for parallel computing, machine and deep learning and for working with big Data, including Torch and Tensar flow facilitating construction and implementation of neural networks. The Bioconductor repository contains over a thousand of software packages written in R for analyzing data sets from CDNA microarrays to copy-number variation and epigenomics (Robert Gentleman-Sorin Draghicia). Due to Data Handling and Modeling capabilities and its flexibility, R is becoming the most widely used software in bioinformatics. The R program is built from a variety of packages. These packages are libraries of commands. The Packages are available from the CRAN website. The current R is the result of a collaborative effort of the R core Group. R has many functions for statistical analysis and graphics. R has an effective data handling and storage facility. R provides operators for calculation on arrays, vectors, lists and matrices. This Book Covers all these with suitable examples. R has a collection of tools for data analysis. Keeping in view the Beginners apprehensions the Book provides the Salient Features of Descriptive Statistics & Covers the specific R tools for Statistical analysis. Throughout the Book examples are accompanied by R commands for easy reference. This Book Covers data handling, graphics, and a wide range of Statistical techniques. The Book would be of immense help to basic sciences, Engineering, Business Statistics, medicine streams, Biotechnology, Pharma, Bioinformatics, Genetics and Epidemiology.
Publisher: Shashwat Publication
ISBN: 9395125136
Category : Computers
Languages : en
Pages : 204
Book Description
R is a Statistcal programming language. R is Free and open source. R is an interpreted language not a compiled one. The R programming environment contains the range of tools for parallel computing, machine and deep learning and for working with big Data, including Torch and Tensar flow facilitating construction and implementation of neural networks. The Bioconductor repository contains over a thousand of software packages written in R for analyzing data sets from CDNA microarrays to copy-number variation and epigenomics (Robert Gentleman-Sorin Draghicia). Due to Data Handling and Modeling capabilities and its flexibility, R is becoming the most widely used software in bioinformatics. The R program is built from a variety of packages. These packages are libraries of commands. The Packages are available from the CRAN website. The current R is the result of a collaborative effort of the R core Group. R has many functions for statistical analysis and graphics. R has an effective data handling and storage facility. R provides operators for calculation on arrays, vectors, lists and matrices. This Book Covers all these with suitable examples. R has a collection of tools for data analysis. Keeping in view the Beginners apprehensions the Book provides the Salient Features of Descriptive Statistics & Covers the specific R tools for Statistical analysis. Throughout the Book examples are accompanied by R commands for easy reference. This Book Covers data handling, graphics, and a wide range of Statistical techniques. The Book would be of immense help to basic sciences, Engineering, Business Statistics, medicine streams, Biotechnology, Pharma, Bioinformatics, Genetics and Epidemiology.
R for Data Science
Author: Hadley Wickham
Publisher: "O'Reilly Media, Inc."
ISBN: 1491910364
Category : Computers
Languages : en
Pages : 521
Book Description
Learn how to use R to turn raw data into insight, knowledge, and understanding. This book introduces you to R, RStudio, and the tidyverse, a collection of R packages designed to work together to make data science fast, fluent, and fun. Suitable for readers with no previous programming experience, R for Data Science is designed to get you doing data science as quickly as possible. Authors Hadley Wickham and Garrett Grolemund guide you through the steps of importing, wrangling, exploring, and modeling your data and communicating the results. You'll get a complete, big-picture understanding of the data science cycle, along with basic tools you need to manage the details. Each section of the book is paired with exercises to help you practice what you've learned along the way. You'll learn how to: Wrangle—transform your datasets into a form convenient for analysis Program—learn powerful R tools for solving data problems with greater clarity and ease Explore—examine your data, generate hypotheses, and quickly test them Model—provide a low-dimensional summary that captures true "signals" in your dataset Communicate—learn R Markdown for integrating prose, code, and results
Publisher: "O'Reilly Media, Inc."
ISBN: 1491910364
Category : Computers
Languages : en
Pages : 521
Book Description
Learn how to use R to turn raw data into insight, knowledge, and understanding. This book introduces you to R, RStudio, and the tidyverse, a collection of R packages designed to work together to make data science fast, fluent, and fun. Suitable for readers with no previous programming experience, R for Data Science is designed to get you doing data science as quickly as possible. Authors Hadley Wickham and Garrett Grolemund guide you through the steps of importing, wrangling, exploring, and modeling your data and communicating the results. You'll get a complete, big-picture understanding of the data science cycle, along with basic tools you need to manage the details. Each section of the book is paired with exercises to help you practice what you've learned along the way. You'll learn how to: Wrangle—transform your datasets into a form convenient for analysis Program—learn powerful R tools for solving data problems with greater clarity and ease Explore—examine your data, generate hypotheses, and quickly test them Model—provide a low-dimensional summary that captures true "signals" in your dataset Communicate—learn R Markdown for integrating prose, code, and results
Physical Chemistry for Engineering and Applied Sciences
Author: Frank R. Foulkes
Publisher: CRC Press
ISBN: 1466518472
Category : Medical
Languages : en
Pages : 682
Book Description
Physical Chemistry for Engineering and Applied Sciences is the product of over 30 years of teaching first-year Physical Chemistry as part of the Faculty of Applied Science and Engineering at the University of Toronto. Designed to be as rigorous as compatible with a first-year student's ability to understand, the text presents detailed step-by-step
Publisher: CRC Press
ISBN: 1466518472
Category : Medical
Languages : en
Pages : 682
Book Description
Physical Chemistry for Engineering and Applied Sciences is the product of over 30 years of teaching first-year Physical Chemistry as part of the Faculty of Applied Science and Engineering at the University of Toronto. Designed to be as rigorous as compatible with a first-year student's ability to understand, the text presents detailed step-by-step
An Introduction to Statistical Learning
Author: Gareth James
Publisher: Springer Nature
ISBN: 3031387473
Category : Mathematics
Languages : en
Pages : 617
Book Description
An Introduction to Statistical Learning provides an accessible overview of the field of statistical learning, an essential toolset for making sense of the vast and complex data sets that have emerged in fields ranging from biology to finance, marketing, and astrophysics in the past twenty years. This book presents some of the most important modeling and prediction techniques, along with relevant applications. Topics include linear regression, classification, resampling methods, shrinkage approaches, tree-based methods, support vector machines, clustering, deep learning, survival analysis, multiple testing, and more. Color graphics and real-world examples are used to illustrate the methods presented. This book is targeted at statisticians and non-statisticians alike, who wish to use cutting-edge statistical learning techniques to analyze their data. Four of the authors co-wrote An Introduction to Statistical Learning, With Applications in R (ISLR), which has become a mainstay of undergraduate and graduate classrooms worldwide, as well as an important reference book for data scientists. One of the keys to its success was that each chapter contains a tutorial on implementing the analyses and methods presented in the R scientific computing environment. However, in recent years Python has become a popular language for data science, and there has been increasing demand for a Python-based alternative to ISLR. Hence, this book (ISLP) covers the same materials as ISLR but with labs implemented in Python. These labs will be useful both for Python novices, as well as experienced users.
Publisher: Springer Nature
ISBN: 3031387473
Category : Mathematics
Languages : en
Pages : 617
Book Description
An Introduction to Statistical Learning provides an accessible overview of the field of statistical learning, an essential toolset for making sense of the vast and complex data sets that have emerged in fields ranging from biology to finance, marketing, and astrophysics in the past twenty years. This book presents some of the most important modeling and prediction techniques, along with relevant applications. Topics include linear regression, classification, resampling methods, shrinkage approaches, tree-based methods, support vector machines, clustering, deep learning, survival analysis, multiple testing, and more. Color graphics and real-world examples are used to illustrate the methods presented. This book is targeted at statisticians and non-statisticians alike, who wish to use cutting-edge statistical learning techniques to analyze their data. Four of the authors co-wrote An Introduction to Statistical Learning, With Applications in R (ISLR), which has become a mainstay of undergraduate and graduate classrooms worldwide, as well as an important reference book for data scientists. One of the keys to its success was that each chapter contains a tutorial on implementing the analyses and methods presented in the R scientific computing environment. However, in recent years Python has become a popular language for data science, and there has been increasing demand for a Python-based alternative to ISLR. Hence, this book (ISLP) covers the same materials as ISLR but with labs implemented in Python. These labs will be useful both for Python novices, as well as experienced users.
Applied Econometrics with R
Author: Christian Kleiber
Publisher: Springer Science & Business Media
ISBN: 0387773185
Category : Business & Economics
Languages : en
Pages : 229
Book Description
R is a language and environment for data analysis and graphics. It may be considered an implementation of S, an award-winning language initially - veloped at Bell Laboratories since the late 1970s. The R project was initiated by Robert Gentleman and Ross Ihaka at the University of Auckland, New Zealand, in the early 1990s, and has been developed by an international team since mid-1997. Historically, econometricians have favored other computing environments, some of which have fallen by the wayside, and also a variety of packages with canned routines. We believe that R has great potential in econometrics, both for research and for teaching. There are at least three reasons for this: (1) R is mostly platform independent and runs on Microsoft Windows, the Mac family of operating systems, and various ?avors of Unix/Linux, and also on some more exotic platforms. (2) R is free software that can be downloaded and installed at no cost from a family of mirror sites around the globe, the Comprehensive R Archive Network (CRAN); hence students can easily install it on their own machines. (3) R is open-source software, so that the full source code is available and can be inspected to understand what it really does, learn from it, and modify and extend it. We also like to think that platform independence and the open-source philosophy make R an ideal environment for reproducible econometric research.
Publisher: Springer Science & Business Media
ISBN: 0387773185
Category : Business & Economics
Languages : en
Pages : 229
Book Description
R is a language and environment for data analysis and graphics. It may be considered an implementation of S, an award-winning language initially - veloped at Bell Laboratories since the late 1970s. The R project was initiated by Robert Gentleman and Ross Ihaka at the University of Auckland, New Zealand, in the early 1990s, and has been developed by an international team since mid-1997. Historically, econometricians have favored other computing environments, some of which have fallen by the wayside, and also a variety of packages with canned routines. We believe that R has great potential in econometrics, both for research and for teaching. There are at least three reasons for this: (1) R is mostly platform independent and runs on Microsoft Windows, the Mac family of operating systems, and various ?avors of Unix/Linux, and also on some more exotic platforms. (2) R is free software that can be downloaded and installed at no cost from a family of mirror sites around the globe, the Comprehensive R Archive Network (CRAN); hence students can easily install it on their own machines. (3) R is open-source software, so that the full source code is available and can be inspected to understand what it really does, learn from it, and modify and extend it. We also like to think that platform independence and the open-source philosophy make R an ideal environment for reproducible econometric research.
Learn R for Applied Statistics
Author: Eric Goh Ming Hui
Publisher: Apress
ISBN: 1484242009
Category : Computers
Languages : en
Pages : 254
Book Description
Gain the R programming language fundamentals for doing the applied statistics useful for data exploration and analysis in data science and data mining. This book covers topics ranging from R syntax basics, descriptive statistics, and data visualizations to inferential statistics and regressions. After learning R’s syntax, you will work through data visualizations such as histograms and boxplot charting, descriptive statistics, and inferential statistics such as t-test, chi-square test, ANOVA, non-parametric test, and linear regressions. Learn R for Applied Statistics is a timely skills-migration book that equips you with the R programming fundamentals and introduces you to applied statistics for data explorations. What You Will LearnDiscover R, statistics, data science, data mining, and big data Master the fundamentals of R programming, including variables and arithmetic, vectors, lists, data frames, conditional statements, loops, and functions Work with descriptive statistics Create data visualizations, including bar charts, line charts, scatter plots, boxplots, histograms, and scatterplots Use inferential statistics including t-tests, chi-square tests, ANOVA, non-parametric tests, linear regressions, and multiple linear regressions Who This Book Is For Those who are interested in data science, in particular data exploration using applied statistics, and the use of R programming for data visualizations.
Publisher: Apress
ISBN: 1484242009
Category : Computers
Languages : en
Pages : 254
Book Description
Gain the R programming language fundamentals for doing the applied statistics useful for data exploration and analysis in data science and data mining. This book covers topics ranging from R syntax basics, descriptive statistics, and data visualizations to inferential statistics and regressions. After learning R’s syntax, you will work through data visualizations such as histograms and boxplot charting, descriptive statistics, and inferential statistics such as t-test, chi-square test, ANOVA, non-parametric test, and linear regressions. Learn R for Applied Statistics is a timely skills-migration book that equips you with the R programming fundamentals and introduces you to applied statistics for data explorations. What You Will LearnDiscover R, statistics, data science, data mining, and big data Master the fundamentals of R programming, including variables and arithmetic, vectors, lists, data frames, conditional statements, loops, and functions Work with descriptive statistics Create data visualizations, including bar charts, line charts, scatter plots, boxplots, histograms, and scatterplots Use inferential statistics including t-tests, chi-square tests, ANOVA, non-parametric tests, linear regressions, and multiple linear regressions Who This Book Is For Those who are interested in data science, in particular data exploration using applied statistics, and the use of R programming for data visualizations.
Applied Statistics with R
Author: Justin C. Touchon
Publisher: Oxford University Press
ISBN: 0198869975
Category : Computers
Languages : en
Pages : 334
Book Description
This book uses the statistical language R, which is the choice of ecologists worldwide and is rapidly becoming the 'go-to' stats program throughout the life-sciences. Furthermore, by using a single, real-world dataset throughout the book, readers are encouraged to become deeply familiar with an imperfect but realistic set of data. - -
Publisher: Oxford University Press
ISBN: 0198869975
Category : Computers
Languages : en
Pages : 334
Book Description
This book uses the statistical language R, which is the choice of ecologists worldwide and is rapidly becoming the 'go-to' stats program throughout the life-sciences. Furthermore, by using a single, real-world dataset throughout the book, readers are encouraged to become deeply familiar with an imperfect but realistic set of data. - -
The R Book
Author: Michael J. Crawley
Publisher: John Wiley & Sons
ISBN: 9780470515068
Category : Mathematics
Languages : en
Pages : 953
Book Description
The high-level language of R is recognized as one of the mostpowerful and flexible statistical software environments, and israpidly becoming the standard setting for quantitative analysis,statistics and graphics. R provides free access to unrivalledcoverage and cutting-edge applications, enabling the user to applynumerous statistical methods ranging from simple regression to timeseries or multivariate analysis. Building on the success of the author’s bestsellingStatistics: An Introduction using R, The R Book ispacked with worked examples, providing an all inclusive guide to R,ideal for novice and more accomplished users alike. The bookassumes no background in statistics or computing and introduces theadvantages of the R environment, detailing its applications in awide range of disciplines. Provides the first comprehensive reference manual for the Rlanguage, including practical guidance and full coverage of thegraphics facilities. Introduces all the statistical models covered by R, beginningwith simple classical tests such as chi-square and t-test. Proceeds to examine more advance methods, from regression andanalysis of variance, through to generalized linear models,generalized mixed models, time series, spatial statistics,multivariate statistics and much more. The R Book is aimed at undergraduates, postgraduates andprofessionals in science, engineering and medicine. It is alsoideal for students and professionals in statistics, economics,geography and the social sciences.
Publisher: John Wiley & Sons
ISBN: 9780470515068
Category : Mathematics
Languages : en
Pages : 953
Book Description
The high-level language of R is recognized as one of the mostpowerful and flexible statistical software environments, and israpidly becoming the standard setting for quantitative analysis,statistics and graphics. R provides free access to unrivalledcoverage and cutting-edge applications, enabling the user to applynumerous statistical methods ranging from simple regression to timeseries or multivariate analysis. Building on the success of the author’s bestsellingStatistics: An Introduction using R, The R Book ispacked with worked examples, providing an all inclusive guide to R,ideal for novice and more accomplished users alike. The bookassumes no background in statistics or computing and introduces theadvantages of the R environment, detailing its applications in awide range of disciplines. Provides the first comprehensive reference manual for the Rlanguage, including practical guidance and full coverage of thegraphics facilities. Introduces all the statistical models covered by R, beginningwith simple classical tests such as chi-square and t-test. Proceeds to examine more advance methods, from regression andanalysis of variance, through to generalized linear models,generalized mixed models, time series, spatial statistics,multivariate statistics and much more. The R Book is aimed at undergraduates, postgraduates andprofessionals in science, engineering and medicine. It is alsoideal for students and professionals in statistics, economics,geography and the social sciences.
Applied Statistics for Environmental Science with R
Author: Abbas F. M. Al-Karkhi
Publisher: Elsevier
ISBN: 0128186232
Category : Science
Languages : en
Pages : 242
Book Description
Applied Statistics for Environmental Science with R presents the theory and application of statistical techniques in environmental science and aids researchers in choosing the appropriate statistical technique for analyzing their data. Focusing on the use of univariate and multivariate statistical methods, this book acts as a step-by-step resource to facilitate understanding in the use of R statistical software for interpreting data in the field of environmental science. Researchers utilizing statistical analysis in environmental science and engineering will find this book to be essential in solving their day-to-day research problems. - Includes step-by-step tutorials to aid in understanding the process and implementation of unique data - Presents statistical theory in a simple way without complex mathematical proofs - Shows how to analyze data using R software and provides R scripts for all examples and figures
Publisher: Elsevier
ISBN: 0128186232
Category : Science
Languages : en
Pages : 242
Book Description
Applied Statistics for Environmental Science with R presents the theory and application of statistical techniques in environmental science and aids researchers in choosing the appropriate statistical technique for analyzing their data. Focusing on the use of univariate and multivariate statistical methods, this book acts as a step-by-step resource to facilitate understanding in the use of R statistical software for interpreting data in the field of environmental science. Researchers utilizing statistical analysis in environmental science and engineering will find this book to be essential in solving their day-to-day research problems. - Includes step-by-step tutorials to aid in understanding the process and implementation of unique data - Presents statistical theory in a simple way without complex mathematical proofs - Shows how to analyze data using R software and provides R scripts for all examples and figures
Applied Statistics Using R
Author: Mehmet Mehmetoglu
Publisher: SAGE
ISBN: 1529766141
Category : Social Science
Languages : en
Pages : 465
Book Description
If you want to learn to use R for data analysis but aren’t sure how to get started, this practical book will help you find the right path through your data. Drawing on real-world data to show you how to use different techniques in practice, it helps you progress your programming and statistics knowledge so you can apply the most appropriate tools in your research. It starts with descriptive statistics and moves through regression to advanced techniques such as structural equation modelling and Bayesian statistics, all with digestible mathematical detail for beginner researchers. The book: Shows you how to use R packages and apply functions, adjusting them to suit different datasets. Gives you the tools to try new statistical techniques and empowers you to become confident using them. Encourages you to learn by doing when running and adapting the authors’ own code. Equips you with solutions to overcome the potential challenges of working with real data that may be messy or imperfect. Accompanied by online resources including screencast tutorials of R that give you step by step guidance and R scripts and datasets for you to practice with, this book is a perfect companion for any student of applied statistics or quantitative research methods courses.
Publisher: SAGE
ISBN: 1529766141
Category : Social Science
Languages : en
Pages : 465
Book Description
If you want to learn to use R for data analysis but aren’t sure how to get started, this practical book will help you find the right path through your data. Drawing on real-world data to show you how to use different techniques in practice, it helps you progress your programming and statistics knowledge so you can apply the most appropriate tools in your research. It starts with descriptive statistics and moves through regression to advanced techniques such as structural equation modelling and Bayesian statistics, all with digestible mathematical detail for beginner researchers. The book: Shows you how to use R packages and apply functions, adjusting them to suit different datasets. Gives you the tools to try new statistical techniques and empowers you to become confident using them. Encourages you to learn by doing when running and adapting the authors’ own code. Equips you with solutions to overcome the potential challenges of working with real data that may be messy or imperfect. Accompanied by online resources including screencast tutorials of R that give you step by step guidance and R scripts and datasets for you to practice with, this book is a perfect companion for any student of applied statistics or quantitative research methods courses.