Author: Sinan Ozdemir
Publisher: Addison-Wesley Professional
ISBN: 0138199337
Category : Computers
Languages : en
Pages : 429
Book Description
The Practical, Step-by-Step Guide to Using LLMs at Scale in Projects and Products Large Language Models (LLMs) like ChatGPT are demonstrating breathtaking capabilities, but their size and complexity have deterred many practitioners from applying them. In Quick Start Guide to Large Language Models, pioneering data scientist and AI entrepreneur Sinan Ozdemir clears away those obstacles and provides a guide to working with, integrating, and deploying LLMs to solve practical problems. Ozdemir brings together all you need to get started, even if you have no direct experience with LLMs: step-by-step instructions, best practices, real-world case studies, hands-on exercises, and more. Along the way, he shares insights into LLMs' inner workings to help you optimize model choice, data formats, parameters, and performance. You'll find even more resources on the companion website, including sample datasets and code for working with open- and closed-source LLMs such as those from OpenAI (GPT-4 and ChatGPT), Google (BERT, T5, and Bard), EleutherAI (GPT-J and GPT-Neo), Cohere (the Command family), and Meta (BART and the LLaMA family). Learn key concepts: pre-training, transfer learning, fine-tuning, attention, embeddings, tokenization, and more Use APIs and Python to fine-tune and customize LLMs for your requirements Build a complete neural/semantic information retrieval system and attach to conversational LLMs for retrieval-augmented generation Master advanced prompt engineering techniques like output structuring, chain-ofthought, and semantic few-shot prompting Customize LLM embeddings to build a complete recommendation engine from scratch with user data Construct and fine-tune multimodal Transformer architectures using opensource LLMs Align LLMs using Reinforcement Learning from Human and AI Feedback (RLHF/RLAIF) Deploy prompts and custom fine-tuned LLMs to the cloud with scalability and evaluation pipelines in mind "By balancing the potential of both open- and closed-source models, Quick Start Guide to Large Language Models stands as a comprehensive guide to understanding and using LLMs, bridging the gap between theoretical concepts and practical application." --Giada Pistilli, Principal Ethicist at HuggingFace "A refreshing and inspiring resource. Jam-packed with practical guidance and clear explanations that leave you smarter about this incredible new field." --Pete Huang, author of The Neuron Register your book for convenient access to downloads, updates, and/or corrections as they become available. See inside book for details.
Quick Start Guide to Large Language Models
Author: Sinan Ozdemir
Publisher: Addison-Wesley Professional
ISBN: 0138199337
Category : Computers
Languages : en
Pages : 429
Book Description
The Practical, Step-by-Step Guide to Using LLMs at Scale in Projects and Products Large Language Models (LLMs) like ChatGPT are demonstrating breathtaking capabilities, but their size and complexity have deterred many practitioners from applying them. In Quick Start Guide to Large Language Models, pioneering data scientist and AI entrepreneur Sinan Ozdemir clears away those obstacles and provides a guide to working with, integrating, and deploying LLMs to solve practical problems. Ozdemir brings together all you need to get started, even if you have no direct experience with LLMs: step-by-step instructions, best practices, real-world case studies, hands-on exercises, and more. Along the way, he shares insights into LLMs' inner workings to help you optimize model choice, data formats, parameters, and performance. You'll find even more resources on the companion website, including sample datasets and code for working with open- and closed-source LLMs such as those from OpenAI (GPT-4 and ChatGPT), Google (BERT, T5, and Bard), EleutherAI (GPT-J and GPT-Neo), Cohere (the Command family), and Meta (BART and the LLaMA family). Learn key concepts: pre-training, transfer learning, fine-tuning, attention, embeddings, tokenization, and more Use APIs and Python to fine-tune and customize LLMs for your requirements Build a complete neural/semantic information retrieval system and attach to conversational LLMs for retrieval-augmented generation Master advanced prompt engineering techniques like output structuring, chain-ofthought, and semantic few-shot prompting Customize LLM embeddings to build a complete recommendation engine from scratch with user data Construct and fine-tune multimodal Transformer architectures using opensource LLMs Align LLMs using Reinforcement Learning from Human and AI Feedback (RLHF/RLAIF) Deploy prompts and custom fine-tuned LLMs to the cloud with scalability and evaluation pipelines in mind "By balancing the potential of both open- and closed-source models, Quick Start Guide to Large Language Models stands as a comprehensive guide to understanding and using LLMs, bridging the gap between theoretical concepts and practical application." --Giada Pistilli, Principal Ethicist at HuggingFace "A refreshing and inspiring resource. Jam-packed with practical guidance and clear explanations that leave you smarter about this incredible new field." --Pete Huang, author of The Neuron Register your book for convenient access to downloads, updates, and/or corrections as they become available. See inside book for details.
Publisher: Addison-Wesley Professional
ISBN: 0138199337
Category : Computers
Languages : en
Pages : 429
Book Description
The Practical, Step-by-Step Guide to Using LLMs at Scale in Projects and Products Large Language Models (LLMs) like ChatGPT are demonstrating breathtaking capabilities, but their size and complexity have deterred many practitioners from applying them. In Quick Start Guide to Large Language Models, pioneering data scientist and AI entrepreneur Sinan Ozdemir clears away those obstacles and provides a guide to working with, integrating, and deploying LLMs to solve practical problems. Ozdemir brings together all you need to get started, even if you have no direct experience with LLMs: step-by-step instructions, best practices, real-world case studies, hands-on exercises, and more. Along the way, he shares insights into LLMs' inner workings to help you optimize model choice, data formats, parameters, and performance. You'll find even more resources on the companion website, including sample datasets and code for working with open- and closed-source LLMs such as those from OpenAI (GPT-4 and ChatGPT), Google (BERT, T5, and Bard), EleutherAI (GPT-J and GPT-Neo), Cohere (the Command family), and Meta (BART and the LLaMA family). Learn key concepts: pre-training, transfer learning, fine-tuning, attention, embeddings, tokenization, and more Use APIs and Python to fine-tune and customize LLMs for your requirements Build a complete neural/semantic information retrieval system and attach to conversational LLMs for retrieval-augmented generation Master advanced prompt engineering techniques like output structuring, chain-ofthought, and semantic few-shot prompting Customize LLM embeddings to build a complete recommendation engine from scratch with user data Construct and fine-tune multimodal Transformer architectures using opensource LLMs Align LLMs using Reinforcement Learning from Human and AI Feedback (RLHF/RLAIF) Deploy prompts and custom fine-tuned LLMs to the cloud with scalability and evaluation pipelines in mind "By balancing the potential of both open- and closed-source models, Quick Start Guide to Large Language Models stands as a comprehensive guide to understanding and using LLMs, bridging the gap between theoretical concepts and practical application." --Giada Pistilli, Principal Ethicist at HuggingFace "A refreshing and inspiring resource. Jam-packed with practical guidance and clear explanations that leave you smarter about this incredible new field." --Pete Huang, author of The Neuron Register your book for convenient access to downloads, updates, and/or corrections as they become available. See inside book for details.
Transforming Conversational AI
Author: Michael McTear
Publisher: Springer Nature
ISBN:
Category :
Languages : en
Pages : 235
Book Description
Publisher: Springer Nature
ISBN:
Category :
Languages : en
Pages : 235
Book Description
Quick Start Guide to Large Language Models (LLMs)
Author: Anand Vemula
Publisher: Independently Published
ISBN:
Category : Computers
Languages : en
Pages : 0
Book Description
"Quick Start Guide to Large Language Models (LLMs)" is a comprehensive manual designed to demystify the complexities of LLMs and equip readers with practical knowledge for leveraging these powerful AI tools. The book serves as an accessible entry point for beginners while providing valuable insights for experienced practitioners looking to deepen their expertise. The guide begins with a thorough introduction to LLMs, explaining their significance, fundamental concepts, and the wide range of applications they support. From enhancing customer service to driving advancements in healthcare, LLMs have become indispensable across various industries. Readers are then guided through the initial setup, including prerequisites, environment configuration, and the installation of necessary tools and libraries. This ensures a smooth start for anyone new to working with LLMs. The core of the book delves into the intricacies of training LLMs. It covers data collection and preparation, emphasizing the importance of high-quality data. The process of selecting the right model is discussed in detail, followed by a step-by-step guide to training, including best practices to optimize performance and prevent common pitfalls. Fine-tuning is highlighted as a crucial step in tailoring pre-trained models to specific tasks. Detailed instructions and practical examples are provided to illustrate the fine-tuning process, enabling readers to achieve optimal results with minimal data. The book also addresses the deployment of LLMs, offering insights into various deployment options, integration with applications, and best practices for monitoring and maintenance. Advanced topics such as transfer learning, handling large datasets, and performance optimization are explored to equip readers with the skills needed to handle complex scenarios. Real-world applications are showcased through case studies and industry-specific use cases, demonstrating the transformative impact of LLMs. The book concludes with a discussion of future trends and common challenges, providing practical solutions and ethical considerations to guide responsible AI development. Whether you're a novice or an expert, "Quick Start Guide to Large Language Models (LLMs)" offers a clear, concise, and practical pathway to mastering the potential of LLMs.
Publisher: Independently Published
ISBN:
Category : Computers
Languages : en
Pages : 0
Book Description
"Quick Start Guide to Large Language Models (LLMs)" is a comprehensive manual designed to demystify the complexities of LLMs and equip readers with practical knowledge for leveraging these powerful AI tools. The book serves as an accessible entry point for beginners while providing valuable insights for experienced practitioners looking to deepen their expertise. The guide begins with a thorough introduction to LLMs, explaining their significance, fundamental concepts, and the wide range of applications they support. From enhancing customer service to driving advancements in healthcare, LLMs have become indispensable across various industries. Readers are then guided through the initial setup, including prerequisites, environment configuration, and the installation of necessary tools and libraries. This ensures a smooth start for anyone new to working with LLMs. The core of the book delves into the intricacies of training LLMs. It covers data collection and preparation, emphasizing the importance of high-quality data. The process of selecting the right model is discussed in detail, followed by a step-by-step guide to training, including best practices to optimize performance and prevent common pitfalls. Fine-tuning is highlighted as a crucial step in tailoring pre-trained models to specific tasks. Detailed instructions and practical examples are provided to illustrate the fine-tuning process, enabling readers to achieve optimal results with minimal data. The book also addresses the deployment of LLMs, offering insights into various deployment options, integration with applications, and best practices for monitoring and maintenance. Advanced topics such as transfer learning, handling large datasets, and performance optimization are explored to equip readers with the skills needed to handle complex scenarios. Real-world applications are showcased through case studies and industry-specific use cases, demonstrating the transformative impact of LLMs. The book concludes with a discussion of future trends and common challenges, providing practical solutions and ethical considerations to guide responsible AI development. Whether you're a novice or an expert, "Quick Start Guide to Large Language Models (LLMs)" offers a clear, concise, and practical pathway to mastering the potential of LLMs.
Generative AI and LLMs
Author: S. Balasubramaniam
Publisher: Walter de Gruyter GmbH & Co KG
ISBN: 311142507X
Category : Computers
Languages : en
Pages : 290
Book Description
Generative artificial intelligence (GAI) and large language models (LLM) are machine learning algorithms that operate in an unsupervised or semi-supervised manner. These algorithms leverage pre-existing content, such as text, photos, audio, video, and code, to generate novel content. The primary objective is to produce authentic and novel material. In addition, there exists an absence of constraints on the quantity of novel material that they are capable of generating. New material can be generated through the utilization of Application Programming Interfaces (APIs) or natural language interfaces, such as the ChatGPT developed by Open AI and Bard developed by Google. The field of generative artificial intelligence (AI) stands out due to its unique characteristic of undergoing development and maturation in a highly transparent manner, with its progress being observed by the public at large. The current era of artificial intelligence is being influenced by the imperative to effectively utilise its capabilities in order to enhance corporate operations. Specifically, the use of large language model (LLM) capabilities, which fall under the category of Generative AI, holds the potential to redefine the limits of innovation and productivity. However, as firms strive to include new technologies, there is a potential for compromising data privacy, long-term competitiveness, and environmental sustainability. This book delves into the exploration of generative artificial intelligence (GAI) and LLM. It examines the historical and evolutionary development of generative AI models, as well as the challenges and issues that have emerged from these models and LLM. This book also discusses the necessity of generative AI-based systems and explores the various training methods that have been developed for generative AI models, including LLM pretraining, LLM fine-tuning, and reinforcement learning from human feedback. Additionally, it explores the potential use cases, applications, and ethical considerations associated with these models. This book concludes by discussing future directions in generative AI and presenting various case studies that highlight the applications of generative AI and LLM.
Publisher: Walter de Gruyter GmbH & Co KG
ISBN: 311142507X
Category : Computers
Languages : en
Pages : 290
Book Description
Generative artificial intelligence (GAI) and large language models (LLM) are machine learning algorithms that operate in an unsupervised or semi-supervised manner. These algorithms leverage pre-existing content, such as text, photos, audio, video, and code, to generate novel content. The primary objective is to produce authentic and novel material. In addition, there exists an absence of constraints on the quantity of novel material that they are capable of generating. New material can be generated through the utilization of Application Programming Interfaces (APIs) or natural language interfaces, such as the ChatGPT developed by Open AI and Bard developed by Google. The field of generative artificial intelligence (AI) stands out due to its unique characteristic of undergoing development and maturation in a highly transparent manner, with its progress being observed by the public at large. The current era of artificial intelligence is being influenced by the imperative to effectively utilise its capabilities in order to enhance corporate operations. Specifically, the use of large language model (LLM) capabilities, which fall under the category of Generative AI, holds the potential to redefine the limits of innovation and productivity. However, as firms strive to include new technologies, there is a potential for compromising data privacy, long-term competitiveness, and environmental sustainability. This book delves into the exploration of generative artificial intelligence (GAI) and LLM. It examines the historical and evolutionary development of generative AI models, as well as the challenges and issues that have emerged from these models and LLM. This book also discusses the necessity of generative AI-based systems and explores the various training methods that have been developed for generative AI models, including LLM pretraining, LLM fine-tuning, and reinforcement learning from human feedback. Additionally, it explores the potential use cases, applications, and ethical considerations associated with these models. This book concludes by discussing future directions in generative AI and presenting various case studies that highlight the applications of generative AI and LLM.
Machine Learning with PyTorch and Scikit-Learn
Author: Sebastian Raschka
Publisher: Packt Publishing Ltd
ISBN: 1801816387
Category : Computers
Languages : en
Pages : 775
Book Description
This book of the bestselling and widely acclaimed Python Machine Learning series is a comprehensive guide to machine and deep learning using PyTorch s simple to code framework. Purchase of the print or Kindle book includes a free eBook in PDF format. Key Features Learn applied machine learning with a solid foundation in theory Clear, intuitive explanations take you deep into the theory and practice of Python machine learning Fully updated and expanded to cover PyTorch, transformers, XGBoost, graph neural networks, and best practices Book DescriptionMachine Learning with PyTorch and Scikit-Learn is a comprehensive guide to machine learning and deep learning with PyTorch. It acts as both a step-by-step tutorial and a reference you'll keep coming back to as you build your machine learning systems. Packed with clear explanations, visualizations, and examples, the book covers all the essential machine learning techniques in depth. While some books teach you only to follow instructions, with this machine learning book, we teach the principles allowing you to build models and applications for yourself. Why PyTorch? PyTorch is the Pythonic way to learn machine learning, making it easier to learn and simpler to code with. This book explains the essential parts of PyTorch and how to create models using popular libraries, such as PyTorch Lightning and PyTorch Geometric. You will also learn about generative adversarial networks (GANs) for generating new data and training intelligent agents with reinforcement learning. Finally, this new edition is expanded to cover the latest trends in deep learning, including graph neural networks and large-scale transformers used for natural language processing (NLP). This PyTorch book is your companion to machine learning with Python, whether you're a Python developer new to machine learning or want to deepen your knowledge of the latest developments.What you will learn Explore frameworks, models, and techniques for machines to learn from data Use scikit-learn for machine learning and PyTorch for deep learning Train machine learning classifiers on images, text, and more Build and train neural networks, transformers, and boosting algorithms Discover best practices for evaluating and tuning models Predict continuous target outcomes using regression analysis Dig deeper into textual and social media data using sentiment analysis Who this book is for If you have a good grasp of Python basics and want to start learning about machine learning and deep learning, then this is the book for you. This is an essential resource written for developers and data scientists who want to create practical machine learning and deep learning applications using scikit-learn and PyTorch. Before you get started with this book, you’ll need a good understanding of calculus, as well as linear algebra.
Publisher: Packt Publishing Ltd
ISBN: 1801816387
Category : Computers
Languages : en
Pages : 775
Book Description
This book of the bestselling and widely acclaimed Python Machine Learning series is a comprehensive guide to machine and deep learning using PyTorch s simple to code framework. Purchase of the print or Kindle book includes a free eBook in PDF format. Key Features Learn applied machine learning with a solid foundation in theory Clear, intuitive explanations take you deep into the theory and practice of Python machine learning Fully updated and expanded to cover PyTorch, transformers, XGBoost, graph neural networks, and best practices Book DescriptionMachine Learning with PyTorch and Scikit-Learn is a comprehensive guide to machine learning and deep learning with PyTorch. It acts as both a step-by-step tutorial and a reference you'll keep coming back to as you build your machine learning systems. Packed with clear explanations, visualizations, and examples, the book covers all the essential machine learning techniques in depth. While some books teach you only to follow instructions, with this machine learning book, we teach the principles allowing you to build models and applications for yourself. Why PyTorch? PyTorch is the Pythonic way to learn machine learning, making it easier to learn and simpler to code with. This book explains the essential parts of PyTorch and how to create models using popular libraries, such as PyTorch Lightning and PyTorch Geometric. You will also learn about generative adversarial networks (GANs) for generating new data and training intelligent agents with reinforcement learning. Finally, this new edition is expanded to cover the latest trends in deep learning, including graph neural networks and large-scale transformers used for natural language processing (NLP). This PyTorch book is your companion to machine learning with Python, whether you're a Python developer new to machine learning or want to deepen your knowledge of the latest developments.What you will learn Explore frameworks, models, and techniques for machines to learn from data Use scikit-learn for machine learning and PyTorch for deep learning Train machine learning classifiers on images, text, and more Build and train neural networks, transformers, and boosting algorithms Discover best practices for evaluating and tuning models Predict continuous target outcomes using regression analysis Dig deeper into textual and social media data using sentiment analysis Who this book is for If you have a good grasp of Python basics and want to start learning about machine learning and deep learning, then this is the book for you. This is an essential resource written for developers and data scientists who want to create practical machine learning and deep learning applications using scikit-learn and PyTorch. Before you get started with this book, you’ll need a good understanding of calculus, as well as linear algebra.
UX for Enterprise ChatGPT Solutions
Author: Richard H. Miller
Publisher: Packt Publishing Ltd
ISBN: 1835463800
Category : Computers
Languages : en
Pages : 446
Book Description
Create engaging AI experiences by mastering ChatGPT for business and leveraging user interface design practices, research methods, prompt engineering, the feeding lifecycle, and more Key Features Learn in-demand design thinking and user research techniques applicable to all conversational AI platforms Measure the quality and evaluate ChatGPT from a customer’s perspective for optimal user experience Set up and use your secure private data, documents, and materials to enhance your ChatGPT models Purchase of the print or Kindle book includes a free PDF eBook Book DescriptionMany enterprises grapple with new technology, often hopping on the bandwagon only to abandon it when challenges emerge. This book is your guide to seamlessly integrating ChatGPT into enterprise solutions with a UX-centered approach. UX for Enterprise ChatGPT Solutions empowers you to master effective use case design and adapt UX guidelines through an engaging learning experience. Discover how to prepare your content for success by tailoring interactions to match your audience’s voice, style, and tone using prompt-engineering and fine-tuning. For UX professionals, this book is the key to anchoring your expertise in this evolving field. Writers, researchers, product managers, and linguists will learn to make insightful design decisions. You’ll explore use cases like ChatGPT-powered chat and recommendation engines, while uncovering the AI magic behind the scenes. The book introduces a and feeding model, enabling you to leverage feedback and monitoring to iterate and refine any Large Language Model solution. Packed with hundreds of tips and tricks, this guide will help you build a continuous improvement cycle suited for AI solutions. By the end, you’ll know how to craft powerful, accurate, responsive, and brand-consistent generative AI experiences, revolutionizing your organization’s use of ChatGPT.What you will learn Align with user needs by applying design thinking to tailor ChatGPT to meet customer expectations Harness user research to enhance chatbots and recommendation engines Track quality metrics and learn methods to evaluate and monitor ChatGPT's quality and usability Establish and maintain a uniform style and tone with prompt engineering and fine-tuning Apply proven heuristics by monitoring and assessing the UX for conversational experiences with trusted methods Refine continuously by implementing an ongoing process for chatbot and feeding Who this book is for This book is for user experience designers, product managers, and product owners of business and enterprise ChatGPT solutions who are interested in learning how to design and implement ChatGPT-4 solutions for enterprise needs. You should have a basic-to-intermediate level of understanding in UI/UX design concepts and fundamental knowledge of ChatGPT-4 and its capabilities.
Publisher: Packt Publishing Ltd
ISBN: 1835463800
Category : Computers
Languages : en
Pages : 446
Book Description
Create engaging AI experiences by mastering ChatGPT for business and leveraging user interface design practices, research methods, prompt engineering, the feeding lifecycle, and more Key Features Learn in-demand design thinking and user research techniques applicable to all conversational AI platforms Measure the quality and evaluate ChatGPT from a customer’s perspective for optimal user experience Set up and use your secure private data, documents, and materials to enhance your ChatGPT models Purchase of the print or Kindle book includes a free PDF eBook Book DescriptionMany enterprises grapple with new technology, often hopping on the bandwagon only to abandon it when challenges emerge. This book is your guide to seamlessly integrating ChatGPT into enterprise solutions with a UX-centered approach. UX for Enterprise ChatGPT Solutions empowers you to master effective use case design and adapt UX guidelines through an engaging learning experience. Discover how to prepare your content for success by tailoring interactions to match your audience’s voice, style, and tone using prompt-engineering and fine-tuning. For UX professionals, this book is the key to anchoring your expertise in this evolving field. Writers, researchers, product managers, and linguists will learn to make insightful design decisions. You’ll explore use cases like ChatGPT-powered chat and recommendation engines, while uncovering the AI magic behind the scenes. The book introduces a and feeding model, enabling you to leverage feedback and monitoring to iterate and refine any Large Language Model solution. Packed with hundreds of tips and tricks, this guide will help you build a continuous improvement cycle suited for AI solutions. By the end, you’ll know how to craft powerful, accurate, responsive, and brand-consistent generative AI experiences, revolutionizing your organization’s use of ChatGPT.What you will learn Align with user needs by applying design thinking to tailor ChatGPT to meet customer expectations Harness user research to enhance chatbots and recommendation engines Track quality metrics and learn methods to evaluate and monitor ChatGPT's quality and usability Establish and maintain a uniform style and tone with prompt engineering and fine-tuning Apply proven heuristics by monitoring and assessing the UX for conversational experiences with trusted methods Refine continuously by implementing an ongoing process for chatbot and feeding Who this book is for This book is for user experience designers, product managers, and product owners of business and enterprise ChatGPT solutions who are interested in learning how to design and implement ChatGPT-4 solutions for enterprise needs. You should have a basic-to-intermediate level of understanding in UI/UX design concepts and fundamental knowledge of ChatGPT-4 and its capabilities.
Feature Engineering Bookcamp
Author: Sinan Ozdemir
Publisher: Simon and Schuster
ISBN: 1638351406
Category : Computers
Languages : en
Pages : 270
Book Description
Deliver huge improvements to your machine learning pipelines without spending hours fine-tuning parameters! This book’s practical case-studies reveal feature engineering techniques that upgrade your data wrangling—and your ML results. In Feature Engineering Bookcamp you will learn how to: Identify and implement feature transformations for your data Build powerful machine learning pipelines with unstructured data like text and images Quantify and minimize bias in machine learning pipelines at the data level Use feature stores to build real-time feature engineering pipelines Enhance existing machine learning pipelines by manipulating the input data Use state-of-the-art deep learning models to extract hidden patterns in data Feature Engineering Bookcamp guides you through a collection of projects that give you hands-on practice with core feature engineering techniques. You’ll work with feature engineering practices that speed up the time it takes to process data and deliver real improvements in your model’s performance. This instantly-useful book skips the abstract mathematical theory and minutely-detailed formulas; instead you’ll learn through interesting code-driven case studies, including tweet classification, COVID detection, recidivism prediction, stock price movement detection, and more. About the technology Get better output from machine learning pipelines by improving your training data! Use feature engineering, a machine learning technique for designing relevant input variables based on your existing data, to simplify training and enhance model performance. While fine-tuning hyperparameters or tweaking models may give you a minor performance bump, feature engineering delivers dramatic improvements by transforming your data pipeline. About the book Feature Engineering Bookcamp walks you through six hands-on projects where you’ll learn to upgrade your training data using feature engineering. Each chapter explores a new code-driven case study, taken from real-world industries like finance and healthcare. You’ll practice cleaning and transforming data, mitigating bias, and more. The book is full of performance-enhancing tips for all major ML subdomains—from natural language processing to time-series analysis. What's inside Identify and implement feature transformations Build machine learning pipelines with unstructured data Quantify and minimize bias in ML pipelines Use feature stores to build real-time feature engineering pipelines Enhance existing pipelines by manipulating input data About the reader For experienced machine learning engineers familiar with Python. About the author Sinan Ozdemir is the founder and CTO of Shiba, a former lecturer of Data Science at Johns Hopkins University, and the author of multiple textbooks on data science and machine learning. Table of Contents 1 Introduction to feature engineering 2 The basics of feature engineering 3 Healthcare: Diagnosing COVID-19 4 Bias and fairness: Modeling recidivism 5 Natural language processing: Classifying social media sentiment 6 Computer vision: Object recognition 7 Time series analysis: Day trading with machine learning 8 Feature stores 9 Putting it all together
Publisher: Simon and Schuster
ISBN: 1638351406
Category : Computers
Languages : en
Pages : 270
Book Description
Deliver huge improvements to your machine learning pipelines without spending hours fine-tuning parameters! This book’s practical case-studies reveal feature engineering techniques that upgrade your data wrangling—and your ML results. In Feature Engineering Bookcamp you will learn how to: Identify and implement feature transformations for your data Build powerful machine learning pipelines with unstructured data like text and images Quantify and minimize bias in machine learning pipelines at the data level Use feature stores to build real-time feature engineering pipelines Enhance existing machine learning pipelines by manipulating the input data Use state-of-the-art deep learning models to extract hidden patterns in data Feature Engineering Bookcamp guides you through a collection of projects that give you hands-on practice with core feature engineering techniques. You’ll work with feature engineering practices that speed up the time it takes to process data and deliver real improvements in your model’s performance. This instantly-useful book skips the abstract mathematical theory and minutely-detailed formulas; instead you’ll learn through interesting code-driven case studies, including tweet classification, COVID detection, recidivism prediction, stock price movement detection, and more. About the technology Get better output from machine learning pipelines by improving your training data! Use feature engineering, a machine learning technique for designing relevant input variables based on your existing data, to simplify training and enhance model performance. While fine-tuning hyperparameters or tweaking models may give you a minor performance bump, feature engineering delivers dramatic improvements by transforming your data pipeline. About the book Feature Engineering Bookcamp walks you through six hands-on projects where you’ll learn to upgrade your training data using feature engineering. Each chapter explores a new code-driven case study, taken from real-world industries like finance and healthcare. You’ll practice cleaning and transforming data, mitigating bias, and more. The book is full of performance-enhancing tips for all major ML subdomains—from natural language processing to time-series analysis. What's inside Identify and implement feature transformations Build machine learning pipelines with unstructured data Quantify and minimize bias in ML pipelines Use feature stores to build real-time feature engineering pipelines Enhance existing pipelines by manipulating input data About the reader For experienced machine learning engineers familiar with Python. About the author Sinan Ozdemir is the founder and CTO of Shiba, a former lecturer of Data Science at Johns Hopkins University, and the author of multiple textbooks on data science and machine learning. Table of Contents 1 Introduction to feature engineering 2 The basics of feature engineering 3 Healthcare: Diagnosing COVID-19 4 Bias and fairness: Modeling recidivism 5 Natural language processing: Classifying social media sentiment 6 Computer vision: Object recognition 7 Time series analysis: Day trading with machine learning 8 Feature stores 9 Putting it all together
Natural Language Processing with Transformers, Revised Edition
Author: Lewis Tunstall
Publisher: "O'Reilly Media, Inc."
ISBN: 1098136764
Category : Computers
Languages : en
Pages : 409
Book Description
Since their introduction in 2017, transformers have quickly become the dominant architecture for achieving state-of-the-art results on a variety of natural language processing tasks. If you're a data scientist or coder, this practical book -now revised in full color- shows you how to train and scale these large models using Hugging Face Transformers, a Python-based deep learning library. Transformers have been used to write realistic news stories, improve Google Search queries, and even create chatbots that tell corny jokes. In this guide, authors Lewis Tunstall, Leandro von Werra, and Thomas Wolf, among the creators of Hugging Face Transformers, use a hands-on approach to teach you how transformers work and how to integrate them in your applications. You'll quickly learn a variety of tasks they can help you solve. Build, debug, and optimize transformer models for core NLP tasks, such as text classification, named entity recognition, and question answering Learn how transformers can be used for cross-lingual transfer learning Apply transformers in real-world scenarios where labeled data is scarce Make transformer models efficient for deployment using techniques such as distillation, pruning, and quantization Train transformers from scratch and learn how to scale to multiple GPUs and distributed environments
Publisher: "O'Reilly Media, Inc."
ISBN: 1098136764
Category : Computers
Languages : en
Pages : 409
Book Description
Since their introduction in 2017, transformers have quickly become the dominant architecture for achieving state-of-the-art results on a variety of natural language processing tasks. If you're a data scientist or coder, this practical book -now revised in full color- shows you how to train and scale these large models using Hugging Face Transformers, a Python-based deep learning library. Transformers have been used to write realistic news stories, improve Google Search queries, and even create chatbots that tell corny jokes. In this guide, authors Lewis Tunstall, Leandro von Werra, and Thomas Wolf, among the creators of Hugging Face Transformers, use a hands-on approach to teach you how transformers work and how to integrate them in your applications. You'll quickly learn a variety of tasks they can help you solve. Build, debug, and optimize transformer models for core NLP tasks, such as text classification, named entity recognition, and question answering Learn how transformers can be used for cross-lingual transfer learning Apply transformers in real-world scenarios where labeled data is scarce Make transformer models efficient for deployment using techniques such as distillation, pruning, and quantization Train transformers from scratch and learn how to scale to multiple GPUs and distributed environments
Natural Language Processing with Python Quick Start Guide
Author: Nirant Kasliwal
Publisher: Packt Publishing Ltd
ISBN: 1788994108
Category : Computers
Languages : en
Pages : 177
Book Description
Build and deploy intelligent applications for natural language processing with Python by using industry standard tools and recently popular methods in deep learning Key FeaturesA no-math, code-driven programmer’s guide to text processing and NLPGet state of the art results with modern tooling across linguistics, text vectors and machine learningFundamentals of NLP methods from spaCy, gensim, scikit-learn and PyTorchBook Description NLP in Python is among the most sought after skills among data scientists. With code and relevant case studies, this book will show how you can use industry-grade tools to implement NLP programs capable of learning from relevant data. We will explore many modern methods ranging from spaCy to word vectors that have reinvented NLP. The book takes you from the basics of NLP to building text processing applications. We start with an introduction to the basic vocabulary along with a workflow for building NLP applications. We use industry-grade NLP tools for cleaning and pre-processing text, automatic question and answer generation using linguistics, text embedding, text classifier, and building a chatbot. With each project, you will learn a new concept of NLP. You will learn about entity recognition, part of speech tagging and dependency parsing for Q and A. We use text embedding for both clustering documents and making chatbots, and then build classifiers using scikit-learn. We conclude by deploying these models as REST APIs with Flask. By the end, you will be confident building NLP applications, and know exactly what to look for when approaching new challenges. What you will learnUnderstand classical linguistics in using English grammar for automatically generating questions and answers from a free text corpusWork with text embedding models for dense number representations of words, subwords and characters in the English language for exploring document clusteringDeep Learning in NLP using PyTorch with a code-driven introduction to PyTorchUsing an NLP project management Framework for estimating timelines and organizing your project into stagesHack and build a simple chatbot application in 30 minutesDeploy an NLP or machine learning application using Flask as RESTFUL APIsWho this book is for Programmers who wish to build systems that can interpret language. Exposure to Python programming is required. Familiarity with NLP or machine learning vocabulary will be helpful, but not mandatory.
Publisher: Packt Publishing Ltd
ISBN: 1788994108
Category : Computers
Languages : en
Pages : 177
Book Description
Build and deploy intelligent applications for natural language processing with Python by using industry standard tools and recently popular methods in deep learning Key FeaturesA no-math, code-driven programmer’s guide to text processing and NLPGet state of the art results with modern tooling across linguistics, text vectors and machine learningFundamentals of NLP methods from spaCy, gensim, scikit-learn and PyTorchBook Description NLP in Python is among the most sought after skills among data scientists. With code and relevant case studies, this book will show how you can use industry-grade tools to implement NLP programs capable of learning from relevant data. We will explore many modern methods ranging from spaCy to word vectors that have reinvented NLP. The book takes you from the basics of NLP to building text processing applications. We start with an introduction to the basic vocabulary along with a workflow for building NLP applications. We use industry-grade NLP tools for cleaning and pre-processing text, automatic question and answer generation using linguistics, text embedding, text classifier, and building a chatbot. With each project, you will learn a new concept of NLP. You will learn about entity recognition, part of speech tagging and dependency parsing for Q and A. We use text embedding for both clustering documents and making chatbots, and then build classifiers using scikit-learn. We conclude by deploying these models as REST APIs with Flask. By the end, you will be confident building NLP applications, and know exactly what to look for when approaching new challenges. What you will learnUnderstand classical linguistics in using English grammar for automatically generating questions and answers from a free text corpusWork with text embedding models for dense number representations of words, subwords and characters in the English language for exploring document clusteringDeep Learning in NLP using PyTorch with a code-driven introduction to PyTorchUsing an NLP project management Framework for estimating timelines and organizing your project into stagesHack and build a simple chatbot application in 30 minutesDeploy an NLP or machine learning application using Flask as RESTFUL APIsWho this book is for Programmers who wish to build systems that can interpret language. Exposure to Python programming is required. Familiarity with NLP or machine learning vocabulary will be helpful, but not mandatory.
Deep Learning with PyTorch Quick Start Guide
Author: David Julian
Publisher: Packt Publishing Ltd
ISBN: 1789539730
Category : Computers
Languages : en
Pages : 150
Book Description
Introduction to deep learning and PyTorch by building a convolutional neural network and recurrent neural network for real-world use cases such as image classification, transfer learning, and natural language processing. Key FeaturesClear and concise explanationsGives important insights into deep learning modelsPractical demonstration of key conceptsBook Description PyTorch is extremely powerful and yet easy to learn. It provides advanced features, such as supporting multiprocessor, distributed, and parallel computation. This book is an excellent entry point for those wanting to explore deep learning with PyTorch to harness its power. This book will introduce you to the PyTorch deep learning library and teach you how to train deep learning models without any hassle. We will set up the deep learning environment using PyTorch, and then train and deploy different types of deep learning models, such as CNN, RNN, and autoencoders. You will learn how to optimize models by tuning hyperparameters and how to use PyTorch in multiprocessor and distributed environments. We will discuss long short-term memory network (LSTMs) and build a language model to predict text. By the end of this book, you will be familiar with PyTorch's capabilities and be able to utilize the library to train your neural networks with relative ease. What you will learnSet up the deep learning environment using the PyTorch libraryLearn to build a deep learning model for image classificationUse a convolutional neural network for transfer learningUnderstand to use PyTorch for natural language processingUse a recurrent neural network to classify textUnderstand how to optimize PyTorch in multiprocessor and distributed environmentsTrain, optimize, and deploy your neural networks for maximum accuracy and performanceLearn to deploy production-ready modelsWho this book is for Developers and Data Scientist familiar with Machine Learning but new to deep learning, or existing practitioners of deep learning who would like to use PyTorch to train their deep learning models will find this book to be useful. Having knowledge of Python programming will be an added advantage, while previous exposure to PyTorch is not needed.
Publisher: Packt Publishing Ltd
ISBN: 1789539730
Category : Computers
Languages : en
Pages : 150
Book Description
Introduction to deep learning and PyTorch by building a convolutional neural network and recurrent neural network for real-world use cases such as image classification, transfer learning, and natural language processing. Key FeaturesClear and concise explanationsGives important insights into deep learning modelsPractical demonstration of key conceptsBook Description PyTorch is extremely powerful and yet easy to learn. It provides advanced features, such as supporting multiprocessor, distributed, and parallel computation. This book is an excellent entry point for those wanting to explore deep learning with PyTorch to harness its power. This book will introduce you to the PyTorch deep learning library and teach you how to train deep learning models without any hassle. We will set up the deep learning environment using PyTorch, and then train and deploy different types of deep learning models, such as CNN, RNN, and autoencoders. You will learn how to optimize models by tuning hyperparameters and how to use PyTorch in multiprocessor and distributed environments. We will discuss long short-term memory network (LSTMs) and build a language model to predict text. By the end of this book, you will be familiar with PyTorch's capabilities and be able to utilize the library to train your neural networks with relative ease. What you will learnSet up the deep learning environment using the PyTorch libraryLearn to build a deep learning model for image classificationUse a convolutional neural network for transfer learningUnderstand to use PyTorch for natural language processingUse a recurrent neural network to classify textUnderstand how to optimize PyTorch in multiprocessor and distributed environmentsTrain, optimize, and deploy your neural networks for maximum accuracy and performanceLearn to deploy production-ready modelsWho this book is for Developers and Data Scientist familiar with Machine Learning but new to deep learning, or existing practitioners of deep learning who would like to use PyTorch to train their deep learning models will find this book to be useful. Having knowledge of Python programming will be an added advantage, while previous exposure to PyTorch is not needed.