The Semantic Web

The Semantic Web PDF Author: Karl Aberer
Publisher: Springer Science & Business Media
ISBN: 3540762973
Category : Business & Economics
Languages : en
Pages : 998

Get Book Here

Book Description
This book constitutes the refereed proceedings of the joint 6th International Semantic Web Conference, ISWC 2007, and the 2nd Asian Semantic Web Conference, ASWC 2007, held in Busan, Korea, in November 2007. The 50 revised full academic papers and 12 revised application papers presented together with 5 Semantic Web Challenge papers and 12 selected doctoral consortium articles were carefully reviewed and selected from a total of 257 submitted papers to the academic track and 29 to the applications track. The papers address all current issues in the field of the semantic Web, ranging from theoretical and foundational aspects to various applied topics such as management of semantic Web data, ontologies, semantic Web architecture, social semantic Web, as well as applications of the semantic Web. Short descriptions of the top five winning applications submitted to the Semantic Web Challenge competition conclude the volume.

The Semantic Web

The Semantic Web PDF Author: Karl Aberer
Publisher: Springer Science & Business Media
ISBN: 3540762973
Category : Business & Economics
Languages : en
Pages : 998

Get Book Here

Book Description
This book constitutes the refereed proceedings of the joint 6th International Semantic Web Conference, ISWC 2007, and the 2nd Asian Semantic Web Conference, ASWC 2007, held in Busan, Korea, in November 2007. The 50 revised full academic papers and 12 revised application papers presented together with 5 Semantic Web Challenge papers and 12 selected doctoral consortium articles were carefully reviewed and selected from a total of 257 submitted papers to the academic track and 29 to the applications track. The papers address all current issues in the field of the semantic Web, ranging from theoretical and foundational aspects to various applied topics such as management of semantic Web data, ontologies, semantic Web architecture, social semantic Web, as well as applications of the semantic Web. Short descriptions of the top five winning applications submitted to the Semantic Web Challenge competition conclude the volume.

Handbook of Graphs and Networks in People Analytics

Handbook of Graphs and Networks in People Analytics PDF Author: Keith McNulty
Publisher: CRC Press
ISBN: 100059727X
Category : Business & Economics
Languages : en
Pages : 266

Get Book Here

Book Description
Handbook of Graphs and Networks in People Analytics: With Examples in R and Python covers the theory and practical implementation of graph methods in R and Python for the analysis of people and organizational networks. Starting with an overview of the origins of graph theory and its current applications in the social sciences, the book proceeds to give in-depth technical instruction on how to construct and store graphs from data, how to visualize those graphs compellingly and how to convert common data structures into graph-friendly form. The book explores critical elements of network analysis in detail, including the measurement of distance and centrality, the detection of communities and cliques, and the analysis of assortativity and similarity. An extension chapter offers an introduction to graph database technologies. Real data sets from various research contexts are used for both instruction and for end of chapter practice exercises and a final chapter contains data sets and exercises ideal for larger personal or group projects of varying difficulty level. Key features: Immediately implementable code, with extensive and varied illustrations of graph variants and layouts. Examples and exercises across a variety of real-life contexts including business, politics, education, social media and crime investigation. Dedicated chapter on graph visualization methods. Practical walkthroughs of common methodological uses: finding influential actors in groups, discovering hidden community structures, facilitating diverse interaction in organizations, detecting political alignment, determining what influences connection and attachment. Various downloadable data sets for use both in class and individual learning projects. Final chapter dedicated to individual or group project examples.

Graph Data Management

Graph Data Management PDF Author: George Fletcher
Publisher: Springer
ISBN: 3319961934
Category : Computers
Languages : en
Pages : 196

Get Book Here

Book Description
This book presents a comprehensive overview of fundamental issues and recent advances in graph data management. Its aim is to provide beginning researchers in the area of graph data management, or in fields that require graph data management, an overview of the latest developments in this area, both in applied and in fundamental subdomains. The topics covered range from a general introduction to graph data management, to more specialized topics like graph visualization, flexible queries of graph data, parallel processing, and benchmarking. The book will help researchers put their work in perspective and show them which types of tools, techniques and technologies are available, which ones could best suit their needs, and where there are still open issues and future research directions. The chapters are contributed by leading experts in the relevant areas, presenting a coherent overview of the state of the art in the field. Readers should have a basic knowledge of data management techniques as they are taught in computer science MSc programs.

Query Processing over Graph-structured Data on the Web

Query Processing over Graph-structured Data on the Web PDF Author: M. Acosta Deibe
Publisher: IOS Press
ISBN: 1614999163
Category : Computers
Languages : en
Pages : 244

Get Book Here

Book Description
In the last years, Linked Data initiatives have encouraged the publication of large graph-structured datasets using the Resource Description Framework (RDF). Due to the constant growth of RDF data on the web, more flexible data management infrastructures must be able to efficiently and effectively exploit the vast amount of knowledge accessible on the web. This book presents flexible query processing strategies over RDF graphs on the web using the SPARQL query language. In this work, we show how query engines can change plans on-the-fly with adaptive techniques to cope with unpredictable conditions and to reduce execution time. Furthermore, this work investigates the application of crowdsourcing in query processing, where engines are able to contact humans to enhance the quality of query answers. The theoretical and empirical results presented in this book indicate that flexible techniques allow for querying RDF data sources efficiently and effectively.

Graph Algorithms

Graph Algorithms PDF Author: Mark Needham
Publisher: "O'Reilly Media, Inc."
ISBN: 1492047635
Category : Computers
Languages : en
Pages : 297

Get Book Here

Book Description
Discover how graph algorithms can help you leverage the relationships within your data to develop more intelligent solutions and enhance your machine learning models. You’ll learn how graph analytics are uniquely suited to unfold complex structures and reveal difficult-to-find patterns lurking in your data. Whether you are trying to build dynamic network models or forecast real-world behavior, this book illustrates how graph algorithms deliver value—from finding vulnerabilities and bottlenecks to detecting communities and improving machine learning predictions. This practical book walks you through hands-on examples of how to use graph algorithms in Apache Spark and Neo4j—two of the most common choices for graph analytics. Also included: sample code and tips for over 20 practical graph algorithms that cover optimal pathfinding, importance through centrality, and community detection. Learn how graph analytics vary from conventional statistical analysis Understand how classic graph algorithms work, and how they are applied Get guidance on which algorithms to use for different types of questions Explore algorithm examples with working code and sample datasets from Spark and Neo4j See how connected feature extraction can increase machine learning accuracy and precision Walk through creating an ML workflow for link prediction combining Neo4j and Spark

Efficient Optimization and Processing of Queries Over Text-rich Graph-structured Data

Efficient Optimization and Processing of Queries Over Text-rich Graph-structured Data PDF Author: Günter Ladwig
Publisher: KIT Scientific Publishing
ISBN: 3731500159
Category : Computers
Languages : en
Pages : 254

Get Book Here

Book Description
Many databases today capture both, structured and unstructured data. Making use of such hybrid data has become an important topic in research and industry. The efficient evaluation of hybrid data queries is the main topic of this thesis. Novel techniques are proposed that improve the whole processing pipeline, from indexes and query optimization to run-time processing. The contributions are evaluated in extensive experiments showing that the proposed techniques improve upon the state of the art.

Graph Databases

Graph Databases PDF Author: Ian Robinson
Publisher: "O'Reilly Media, Inc."
ISBN: 1449356222
Category : Computers
Languages : en
Pages : 161

Get Book Here

Book Description
Discover how graph databases can help you manage and query highly connected data. With this practical book, you’ll learn how to design and implement a graph database that brings the power of graphs to bear on a broad range of problem domains. Whether you want to speed up your response to user queries or build a database that can adapt as your business evolves, this book shows you how to apply the schema-free graph model to real-world problems. Learn how different organizations are using graph databases to outperform their competitors. With this book’s data modeling, query, and code examples, you’ll quickly be able to implement your own solution. Model data with the Cypher query language and property graph model Learn best practices and common pitfalls when modeling with graphs Plan and implement a graph database solution in test-driven fashion Explore real-world examples to learn how and why organizations use a graph database Understand common patterns and components of graph database architecture Use analytical techniques and algorithms to mine graph database information

Graph Databases

Graph Databases PDF Author: Ian Robinson
Publisher: "O'Reilly Media, Inc."
ISBN: 1491930861
Category : Computers
Languages : en
Pages : 238

Get Book Here

Book Description
Discover how graph databases can help you manage and query highly connected data. With this practical book, you’ll learn how to design and implement a graph database that brings the power of graphs to bear on a broad range of problem domains. Whether you want to speed up your response to user queries or build a database that can adapt as your business evolves, this book shows you how to apply the schema-free graph model to real-world problems. This second edition includes new code samples and diagrams, using the latest Neo4j syntax, as well as information on new functionality. Learn how different organizations are using graph databases to outperform their competitors. With this book’s data modeling, query, and code examples, you’ll quickly be able to implement your own solution. Model data with the Cypher query language and property graph model Learn best practices and common pitfalls when modeling with graphs Plan and implement a graph database solution in test-driven fashion Explore real-world examples to learn how and why organizations use a graph database Understand common patterns and components of graph database architecture Use analytical techniques and algorithms to mine graph database information

Managing and Mining Graph Data

Managing and Mining Graph Data PDF Author: Charu C. Aggarwal
Publisher: Springer Science & Business Media
ISBN: 1441960457
Category : Computers
Languages : en
Pages : 623

Get Book Here

Book Description
Managing and Mining Graph Data is a comprehensive survey book in graph management and mining. It contains extensive surveys on a variety of important graph topics such as graph languages, indexing, clustering, data generation, pattern mining, classification, keyword search, pattern matching, and privacy. It also studies a number of domain-specific scenarios such as stream mining, web graphs, social networks, chemical and biological data. The chapters are written by well known researchers in the field, and provide a broad perspective of the area. This is the first comprehensive survey book in the emerging topic of graph data processing. Managing and Mining Graph Data is designed for a varied audience composed of professors, researchers and practitioners in industry. This volume is also suitable as a reference book for advanced-level database students in computer science and engineering.

Querying Graphs

Querying Graphs PDF Author: Angela Bonifati
Publisher: Springer Nature
ISBN: 3031018648
Category : Computers
Languages : en
Pages : 166

Get Book Here

Book Description
Graph data modeling and querying arises in many practical application domains such as social and biological networks where the primary focus is on concepts and their relationships and the rich patterns in these complex webs of interconnectivity. In this book, we present a concise unified view on the basic challenges which arise over the complete life cycle of formulating and processing queries on graph databases. To that purpose, we present all major concepts relevant to this life cycle, formulated in terms of a common and unifying ground: the property graph data model—the pre-dominant data model adopted by modern graph database systems. We aim especially to give a coherent and in-depth perspective on current graph querying and an outlook for future developments. Our presentation is self-contained, covering the relevant topics from: graph data models, graph query languages and graph query specification, graph constraints, and graph query processing. We conclude by indicating major open research challenges towards the next generation of graph data management systems.