Quaternion and Clifford Fourier Transforms and Wavelets

Quaternion and Clifford Fourier Transforms and Wavelets PDF Author: Eckhard Hitzer
Publisher: Springer Science & Business Media
ISBN: 3034806035
Category : Mathematics
Languages : en
Pages : 358

Get Book Here

Book Description
Quaternion and Clifford Fourier and wavelet transformations generalize the classical theory to higher dimensions and are becoming increasingly important in diverse areas of mathematics, physics, computer science and engineering. This edited volume presents the state of the art in these hypercomplex transformations. The Clifford algebras unify Hamilton’s quaternions with Grassmann algebra. A Clifford algebra is a complete algebra of a vector space and all its subspaces including the measurement of volumes and dihedral angles between any pair of subspaces. Quaternion and Clifford algebras permit the systematic generalization of many known concepts. This book provides comprehensive insights into current developments and applications including their performance and evaluation. Mathematically, it indicates where further investigation is required. For instance, attention is drawn to the matrix isomorphisms for hypercomplex algebras, which will help readers to see that software implementations are within our grasp. It also contributes to a growing unification of ideas and notation across the expanding field of hypercomplex transforms and wavelets. The first chapter provides a historical background and an overview of the relevant literature, and shows how the contributions that follow relate to each other and to prior work. The book will be a valuable resource for graduate students as well as for scientists and engineers.

Quaternion and Clifford Fourier Transforms and Wavelets

Quaternion and Clifford Fourier Transforms and Wavelets PDF Author: Eckhard Hitzer
Publisher: Springer Science & Business Media
ISBN: 3034806035
Category : Mathematics
Languages : en
Pages : 358

Get Book Here

Book Description
Quaternion and Clifford Fourier and wavelet transformations generalize the classical theory to higher dimensions and are becoming increasingly important in diverse areas of mathematics, physics, computer science and engineering. This edited volume presents the state of the art in these hypercomplex transformations. The Clifford algebras unify Hamilton’s quaternions with Grassmann algebra. A Clifford algebra is a complete algebra of a vector space and all its subspaces including the measurement of volumes and dihedral angles between any pair of subspaces. Quaternion and Clifford algebras permit the systematic generalization of many known concepts. This book provides comprehensive insights into current developments and applications including their performance and evaluation. Mathematically, it indicates where further investigation is required. For instance, attention is drawn to the matrix isomorphisms for hypercomplex algebras, which will help readers to see that software implementations are within our grasp. It also contributes to a growing unification of ideas and notation across the expanding field of hypercomplex transforms and wavelets. The first chapter provides a historical background and an overview of the relevant literature, and shows how the contributions that follow relate to each other and to prior work. The book will be a valuable resource for graduate students as well as for scientists and engineers.

Quaternion and Clifford Fourier Transforms

Quaternion and Clifford Fourier Transforms PDF Author: Eckhard Hitzer
Publisher: CRC Press
ISBN: 1000429342
Category : Mathematics
Languages : en
Pages : 475

Get Book Here

Book Description
Quaternion and Clifford Fourier Transforms describes the development of quaternion and Clifford Fourier transforms in Clifford (geometric) algebra over the last 30 years. It is the first comprehensive, self-contained book covering this vibrant new area of pure and applied mathematics in depth. The book begins with a historic overview, followed by chapters on Clifford and quaternion algebra and geometric (vector) differential calculus (part of Clifford analysis). The core of the book consists of one chapter on quaternion Fourier transforms and one on Clifford Fourier transforms. These core chapters and their sections on more special topics are reasonably self-contained, so that readers already somewhat familiar with quaternions and Clifford algebra will hopefully be able to begin reading directly in the chapter and section of their particular interest, without frequently needing to skip back and forth. The topics covered are of fundamental interest to pure and applied mathematicians, physicists, and engineers (signal and color image processing, electrical engineering, computer science, computer graphics, artificial intelligence, geographic information science, aero-space engineering, navigation, etc.). Features Intuitive real geometric approach to higher-dimensional Fourier transformations A comprehensive reference, suitable for graduate students and researchers Includes detailed definitions, properties, and many full step-by-step proofs Many figures and tables, a comprehensive biography, and a detailed index make it easy to locate information

Quaternion Fourier Transforms for Signal and Image Processing

Quaternion Fourier Transforms for Signal and Image Processing PDF Author: Todd A. Ell
Publisher: John Wiley & Sons
ISBN: 1848214782
Category : Technology & Engineering
Languages : en
Pages : 168

Get Book Here

Book Description
Based on updates to signal and image processing technology made in the last two decades, this text examines the most recent research results pertaining to Quaternion Fourier Transforms. QFT is a central component of processing color images and complex valued signals. The book’s attention to mathematical concepts, imaging applications, and Matlab compatibility render it an irreplaceable resource for students, scientists, researchers, and engineers.

Geometric Computing with Clifford Algebras

Geometric Computing with Clifford Algebras PDF Author: Gerald Sommer
Publisher: Springer Science & Business Media
ISBN: 3662046210
Category : Computers
Languages : en
Pages : 559

Get Book Here

Book Description
This monograph-like anthology introduces the concepts and framework of Clifford algebra. It provides a rich source of examples of how to work with this formalism. Clifford or geometric algebra shows strong unifying aspects and turned out in the 1960s to be a most adequate formalism for describing different geometry-related algebraic systems as specializations of one "mother algebra" in various subfields of physics and engineering. Recent work shows that Clifford algebra provides a universal and powerful algebraic framework for an elegant and coherent representation of various problems occurring in computer science, signal processing, neural computing, image processing, pattern recognition, computer vision, and robotics.

Visualizing Quaternions

Visualizing Quaternions PDF Author: Andrew J. Hanson
Publisher: Elsevier
ISBN: 0080474772
Category : Mathematics
Languages : en
Pages : 530

Get Book Here

Book Description
Introduced 160 years ago as an attempt to generalize complex numbers to higher dimensions, quaternions are now recognized as one of the most important concepts in modern computer graphics. They offer a powerful way to represent rotations and compared to rotation matrices they use less memory, compose faster, and are naturally suited for efficient interpolation of rotations. Despite this, many practitioners have avoided quaternions because of the mathematics used to understand them, hoping that some day a more intuitive description will be available.The wait is over. Andrew Hanson's new book is a fresh perspective on quaternions. The first part of the book focuses on visualizing quaternions to provide the intuition necessary to use them, and includes many illustrative examples to motivate why they are important—a beautiful introduction to those wanting to explore quaternions unencumbered by their mathematical aspects. The second part covers the all-important advanced applications, including quaternion curves, surfaces, and volumes. Finally, for those wanting the full story of the mathematics behind quaternions, there is a gentle introduction to their four-dimensional nature and to Clifford Algebras, the all-encompassing framework for vectors and quaternions. - Richly illustrated introduction for the developer, scientist, engineer, or student in computer graphics, visualization, or entertainment computing. - Covers both non-mathematical and mathematical approaches to quaternions.

Fourier Series in Several Variables with Applications to Partial Differential Equations

Fourier Series in Several Variables with Applications to Partial Differential Equations PDF Author: Victor Shapiro
Publisher: CRC Press
ISBN: 1439854289
Category : Mathematics
Languages : en
Pages : 351

Get Book Here

Book Description
Discussing many results and studies from the literature, this work illustrates the value of Fourier series methods in solving difficult nonlinear PDEs. Using these methods, the author presents results for stationary Navier-Stokes equations, nonlinear reaction-diffusion systems, and quasilinear elliptic PDEs and resonance theory. He also establishes the connection between multiple Fourier series and number theory, presents the periodic Ca-theory of Calderon and Zygmund, and explores the extension of Fatou's famous work on antiderivatives and nontangential limits to higher dimensions. The importance of surface spherical harmonic functions is emphasized throughout.

Fourier and Laplace Transforms

Fourier and Laplace Transforms PDF Author:
Publisher: Cambridge University Press
ISBN: 9780521534413
Category : Mathematics
Languages : en
Pages : 468

Get Book Here

Book Description
This textbook presents in a unified manner the fundamentals of both continuous and discrete versions of the Fourier and Laplace transforms. These transforms play an important role in the analysis of all kinds of physical phenomena. As a link between the various applications of these transforms the authors use the theory of signals and systems, as well as the theory of ordinary and partial differential equations. The book is divided into four major parts: periodic functions and Fourier series, non-periodic functions and the Fourier integral, switched-on signals and the Laplace transform, and finally the discrete versions of these transforms, in particular the Discrete Fourier Transform together with its fast implementation, and the z-transform. This textbook is designed for self-study. It includes many worked examples, together with more than 120 exercises, and will be of great value to undergraduates and graduate students in applied mathematics, electrical engineering, physics and computer science.

Exploring physics with Geometric Algebra

Exploring physics with Geometric Algebra PDF Author: Peeter Joot
Publisher: Peeter Joot
ISBN:
Category : Science
Languages : en
Pages : 1106

Get Book Here

Book Description
This is an exploratory collection of notes containing worked examples of a number of applications of Geometric Algebra (GA), also known as Clifford Algebra. This writing is focused on undergraduate level physics concepts, with a target audience of somebody with an undergraduate engineering background (i.e. me at the time of writing.) These notes are more journal than book. You'll find lots of duplication, since I reworked some topics from scratch a number of times. In many places I was attempting to learn both the basic physics concepts as well as playing with how to express many of those concepts using GA formalisms. The page count proves that I did a very poor job of weeding out all the duplication. These notes are (dis)organized into the following chapters * Basics and Geometry. This chapter covers a hodge-podge collection of topics, including GA forms for traditional vector identities, Quaterions, Cauchy equations, Legendre polynomials, wedge product representation of a plane, bivector and trivector geometry, torque and more. A couple attempts at producing an introduction to GA concepts are included (none of which I was ever happy with.) * Projection. Here the concept of reciprocal frame vectors, using GA and traditional matrix formalisms is developed. Projection, rejection and Moore-Penrose (generalized inverse) operations are discussed. * Rotation. GA Rotors, Euler angles, spherical coordinates, blade exponentials, rotation generators, and infinitesimal rotations are all examined from a GA point of view. * Calculus. Here GA equivalents for a number of vector calculus relations are developed, spherical and hyperspherical volume parameterizations are derived, some questions about the structure of divergence and curl are examined, and tangent planes and normals in 3 and 4 dimensions are examined. Wrapping up this chapter is a complete GA formulation of the general Stokes theorem for curvilinear coordinates in Euclidean or non-Euclidean spaces is developed. * General Physics. This chapter introduces a bivector form of angular momentum (instead of a cross product), examines the components of radial velocity and acceleration, kinetic energy, symplectic structure, Newton's method, and a center of mass problem for a toroidal segment. * Relativity. This is a fairly incoherent chapter, including an attempt to develop the Lorentz transformation by requiring wave equation invariance, Lorentz transformation of the four-vector (STA) gradient, and a look at the relativistic doppler equation. * Electrodynamics. The GA formulation of Maxwell's equation (singular in GA) is developed here. Various basic topics of electrodynamics are examined using the GA toolbox, including the Biot-Savart law, the covariant form for Maxwell's equation (Space Time Algebra, or STA), four vectors and potentials, gauge invariance, TEM waves, and some Lienard-Wiechert problems. * Lorentz Force. Here the GA form of the Lorentz force equation and its relation to the usual vectorial representation is explored. This includes some application of boosts to the force equation to examine how it transforms under observe dependent conditions. * Electrodynamic stress energy. This chapter explores concepts of electrodynamic energy and momentum density and the GA representation of the Poynting vector and the stress-energy tensors. * Quantum Mechanics. This chapter includes a look at the Dirac Lagrangian, and how this can be cast into GA form. Properties of the Pauli and Dirac bases are explored, and how various matrix operations map onto their GA equivalents. A bivector form for the angular momentum operator is examined. A multivector form for the first few spherical harmonic eigenfunctions is developed. A multivector factorization of the three and four dimensional Laplacian and the angular momentum operators are derived. * Fourier treatments. Solutions to various PDE equations are attempted using Fourier series and transforms. Much of this chapter was exploring Fourier solutions to the GA form of Maxwell's equation, but a few other non-geometric algebra Fourier problems were also tackled.

On Quaternions and Octonions

On Quaternions and Octonions PDF Author: John H. Conway
Publisher: CRC Press
ISBN: 1439864187
Category : Mathematics
Languages : en
Pages : 172

Get Book Here

Book Description
This book investigates the geometry of quaternion and octonion algebras. Following a comprehensive historical introduction, the book illuminates the special properties of 3- and 4-dimensional Euclidean spaces using quaternions, leading to enumerations of the corresponding finite groups of symmetries. The second half of the book discusses the less f

Geometric Algebra Applications Vol. I

Geometric Algebra Applications Vol. I PDF Author: Eduardo Bayro-Corrochano
Publisher: Springer
ISBN: 3319748300
Category : Technology & Engineering
Languages : en
Pages : 753

Get Book Here

Book Description
The goal of the Volume I Geometric Algebra for Computer Vision, Graphics and Neural Computing is to present a unified mathematical treatment of diverse problems in the general domain of artificial intelligence and associated fields using Clifford, or geometric, algebra. Geometric algebra provides a rich and general mathematical framework for Geometric Cybernetics in order to develop solutions, concepts and computer algorithms without losing geometric insight of the problem in question. Current mathematical subjects can be treated in an unified manner without abandoning the mathematical system of geometric algebra for instance: multilinear algebra, projective and affine geometry, calculus on manifolds, Riemann geometry, the representation of Lie algebras and Lie groups using bivector algebras and conformal geometry. By treating a wide spectrum of problems in a common language, this Volume I offers both new insights and new solutions that should be useful to scientists, and engineers working in different areas related with the development and building of intelligent machines. Each chapter is written in accessible terms accompanied by numerous examples, figures and a complementary appendix on Clifford algebras, all to clarify the theory and the crucial aspects of the application of geometric algebra to problems in graphics engineering, image processing, pattern recognition, computer vision, machine learning, neural computing and cognitive systems.