Linear and Quasilinear Parabolic Problems

Linear and Quasilinear Parabolic Problems PDF Author: Herbert Amann
Publisher: Birkhäuser
ISBN: 3034892217
Category : Mathematics
Languages : en
Pages : 366

Get Book Here

Book Description
In this treatise we present the semigroup approach to quasilinear evolution equa of parabolic type that has been developed over the last ten years, approxi tions mately. It emphasizes the dynamic viewpoint and is sufficiently general and flexible to encompass a great variety of concrete systems of partial differential equations occurring in science, some of those being of rather 'nonstandard' type. In partic ular, to date it is the only general method that applies to noncoercive systems. Although we are interested in nonlinear problems, our method is based on the theory of linear holomorphic semigroups. This distinguishes it from the theory of nonlinear contraction semigroups whose basis is a nonlinear version of the Hille Yosida theorem: the Crandall-Liggett theorem. The latter theory is well-known and well-documented in the literature. Even though it is a powerful technique having found many applications, it is limited in its scope by the fact that, in concrete applications, it is closely tied to the maximum principle. Thus the theory of nonlinear contraction semigroups does not apply to systems, in general, since they do not allow for a maximum principle. For these reasons we do not include that theory.

Linear and Quasilinear Parabolic Problems

Linear and Quasilinear Parabolic Problems PDF Author: Herbert Amann
Publisher: Birkhäuser
ISBN: 3034892217
Category : Mathematics
Languages : en
Pages : 366

Get Book Here

Book Description
In this treatise we present the semigroup approach to quasilinear evolution equa of parabolic type that has been developed over the last ten years, approxi tions mately. It emphasizes the dynamic viewpoint and is sufficiently general and flexible to encompass a great variety of concrete systems of partial differential equations occurring in science, some of those being of rather 'nonstandard' type. In partic ular, to date it is the only general method that applies to noncoercive systems. Although we are interested in nonlinear problems, our method is based on the theory of linear holomorphic semigroups. This distinguishes it from the theory of nonlinear contraction semigroups whose basis is a nonlinear version of the Hille Yosida theorem: the Crandall-Liggett theorem. The latter theory is well-known and well-documented in the literature. Even though it is a powerful technique having found many applications, it is limited in its scope by the fact that, in concrete applications, it is closely tied to the maximum principle. Thus the theory of nonlinear contraction semigroups does not apply to systems, in general, since they do not allow for a maximum principle. For these reasons we do not include that theory.

Linear and Quasilinear Parabolic Problems

Linear and Quasilinear Parabolic Problems PDF Author: Herbert Amann
Publisher: Springer
ISBN: 3030117634
Category : Mathematics
Languages : en
Pages : 476

Get Book Here

Book Description
This volume discusses an in-depth theory of function spaces in an Euclidean setting, including several new features, not previously covered in the literature. In particular, it develops a unified theory of anisotropic Besov and Bessel potential spaces on Euclidean corners, with infinite-dimensional Banach spaces as targets. It especially highlights the most important subclasses of Besov spaces, namely Slobodeckii and Hölder spaces. In this case, no restrictions are imposed on the target spaces, except for reflexivity assumptions in duality results. In this general setting, the author proves sharp embedding, interpolation, and trace theorems, point-wise multiplier results, as well as Gagliardo-Nirenberg estimates and generalizations of Aubin-Lions compactness theorems. The results presented pave the way for new applications in situations where infinite-dimensional target spaces are relevant – in the realm of stochastic differential equations, for example.

Moving Interfaces and Quasilinear Parabolic Evolution Equations

Moving Interfaces and Quasilinear Parabolic Evolution Equations PDF Author: Jan Prüss
Publisher: Birkhäuser
ISBN: 3319276980
Category : Mathematics
Languages : en
Pages : 618

Get Book Here

Book Description
In this monograph, the authors develop a comprehensive approach for the mathematical analysis of a wide array of problems involving moving interfaces. It includes an in-depth study of abstract quasilinear parabolic evolution equations, elliptic and parabolic boundary value problems, transmission problems, one- and two-phase Stokes problems, and the equations of incompressible viscous one- and two-phase fluid flows. The theory of maximal regularity, an essential element, is also fully developed. The authors present a modern approach based on powerful tools in classical analysis, functional analysis, and vector-valued harmonic analysis. The theory is applied to problems in two-phase fluid dynamics and phase transitions, one-phase generalized Newtonian fluids, nematic liquid crystal flows, Maxwell-Stefan diffusion, and a variety of geometric evolution equations. The book also includes a discussion of the underlying physical and thermodynamic principles governing the equations of fluid flows and phase transitions, and an exposition of the geometry of moving hypersurfaces.

Nonlinear Parabolic and Elliptic Equations

Nonlinear Parabolic and Elliptic Equations PDF Author: C.V. Pao
Publisher: Springer Science & Business Media
ISBN: 1461530342
Category : Mathematics
Languages : en
Pages : 786

Get Book Here

Book Description
In response to the growing use of reaction diffusion problems in many fields, this monograph gives a systematic treatment of a class of nonlinear parabolic and elliptic differential equations and their applications these problems. It is an important reference for mathematicians and engineers, as well as a practical text for graduate students.

Parabolic Quasilinear Equations Minimizing Linear Growth Functionals

Parabolic Quasilinear Equations Minimizing Linear Growth Functionals PDF Author: Fuensanta Andreu-Vaillo
Publisher: Springer Science & Business Media
ISBN: 9783764366193
Category : Computers
Languages : en
Pages : 368

Get Book Here

Book Description
This book details the mathematical developments in total variation based image restauration. From the reviews: "This book is devoted to PDE's of elliptic and parabolic type associated to functionals having a linear growth in the gradient, with a special emphasis on the applications related to image restoration and nonlinear filters....The book is written with great care, paying also a lot of attention to the bibliographical and historical notes."-- ZENTRALBLATT MATH

Linear and Nonlinear Parabolic Complex Equations

Linear and Nonlinear Parabolic Complex Equations PDF Author: Guo Chun Wen
Publisher: World Scientific
ISBN: 9789810238568
Category : Mathematics
Languages : en
Pages : 260

Get Book Here

Book Description
"This is a very interesting book written by a well-known expert on complex methods in partial differential equations. It contains many recent results, many of them published for the first time, some published originally in Chinese".Mathematical Reviews

Linear and Quasi-linear Equations of Parabolic Type

Linear and Quasi-linear Equations of Parabolic Type PDF Author: Olʹga A. Ladyženskaja
Publisher: American Mathematical Soc.
ISBN: 9780821815731
Category : Mathematics
Languages : en
Pages : 74

Get Book Here

Book Description
Equations of parabolic type are encountered in many areas of mathematics and mathematical physics, and those encountered most frequently are linear and quasi-linear parabolic equations of the second order. In this volume, boundary value problems for such equations are studied from two points of view: solvability, unique or otherwise, and the effect of smoothness properties of the functions entering the initial and boundary conditions on the smoothness of the solutions.

Nonlinear Elliptic and Parabolic Problems

Nonlinear Elliptic and Parabolic Problems PDF Author: Michel Chipot
Publisher: Springer Science & Business Media
ISBN: 3764373857
Category : Mathematics
Languages : en
Pages : 531

Get Book Here

Book Description
Celebrates the work of the renowned mathematician Herbert Amann, who had a significant and decisive influence in shaping Nonlinear Analysis. Containing 32 contributions, this volume covers a range of nonlinear elliptic and parabolic equations, with applications to natural sciences and engineering.

Nonlinear Parabolic Equations and Hyperbolic-Parabolic Coupled Systems

Nonlinear Parabolic Equations and Hyperbolic-Parabolic Coupled Systems PDF Author: Songmu Zheng
Publisher: CRC Press
ISBN: 9780582244887
Category : Mathematics
Languages : en
Pages : 274

Get Book Here

Book Description
This monograph is devoted to the global existence, uniqueness and asymptotic behaviour of smooth solutions to both initial value problems and initial boundary value problems for nonlinear parabolic equations and hyperbolic parabolic coupled systems. Most of the material is based on recent research carried out by the author and his collaborators. The book can be divided into two parts. In the first part, the results on decay of solutions to nonlinear parabolic equations and hyperbolic parabolic coupled systems are obtained, and a chapter is devoted to the global existence of small smooth solutions to fully nonlinear parabolic equations and quasilinear hyperbolic parabolic coupled systems. Applications of the results to nonlinear thermoelasticity and fluid dynamics are also shown. Some nonlinear parabolic equations and coupled systems arising from the study of phase transitions are investigated in the second part of the book. The global existence, uniqueness and asymptotic behaviour of smooth solutions with arbitrary initial data are obtained. The final chapter is further devoted to related topics: multiplicity of equilibria and the existence of a global attractor, inertial manifold and inertial set. A knowledge of partial differential equations and Sobolev spaces is assumed. As an aid to the reader, the related concepts and results are collected and the relevant references given in the first chapter. The work will be of interest to researchers and graduate students in pure and applied mathematics, mathematical physics and applied sciences.

Linear and Quasilinear Parabolic Problems

Linear and Quasilinear Parabolic Problems PDF Author: Herbert Amann
Publisher: Springer Science & Business Media
ISBN: 9783764351144
Category : Language Arts & Disciplines
Languages : en
Pages : 688

Get Book Here

Book Description
This treatise gives an exposition of the functional analytical approach to quasilinear parabolic evolution equations, developed to a large extent by the author during the last 10 years. This approach is based on the theory of linear nonautonomous parabolic evolution equations and on interpolation-extrapolation techniques. It is the only general method that applies to noncoercive quasilinear parabolic systems under nonlinear boundary conditions. The present first volume is devoted to a detailed study of nonautonomous linear parabolic evolution equations in general Banach spaces. It contains a careful exposition of the constant domain case, leading to some improvements of the classical Sobolevskii-Tanabe results. It also includes recent results for equations possessing constant interpolation spaces. In addition, systematic presentations of the theory of maximal regularity in spaces of continuous and Hölder continuous functions, and in Lebesgue spaces, are given. It includes related recent theorems in the field of harmonic analysis in Banach spaces and on operators possessing bounded imaginary powers. Lastly, there is a complete presentation of the technique of interpolation-extrapolation spaces and of evolution equations in those spaces, containing many new results.