Author: Fernando Haas
Publisher: Springer Science & Business Media
ISBN: 1441982019
Category : Science
Languages : en
Pages : 215
Book Description
This book provides an overview of the basic concepts and new methods in the emerging scientific area known as quantum plasmas. In the near future, quantum effects in plasmas will be unavoidable, particularly in high density scenarios such as those in the next-generation intense laser-solid density plasma experiment or in compact astrophysics objects. Currently, plasmas are in the forefront of many intriguing questions around the transition from microscopic to macroscopic modeling of charged particle systems. Quantum Plasmas: an Hydrodynamic Approach is devoted to the quantum hydrodynamic model paradigm, which, unlike straight quantum kinetic theory, is much more amenable to investigate the nonlinear realm of quantum plasmas. The reader will have a step-by-step construction of the quantum hydrodynamic method applied to plasmas. The book is intended for specialists in classical plasma physics interested in methods of quantum plasma theory, as well as scientists interested in common aspects of two major areas of knowledge: plasma and quantum theory. In these chapters, the quantum hydrodynamic model for plasmas, which has continuously evolved over the past decade, will be summarized to include both the development and applications of the method.
Quantum Plasmas
Author: Fernando Haas
Publisher: Springer Science & Business Media
ISBN: 1441982019
Category : Science
Languages : en
Pages : 215
Book Description
This book provides an overview of the basic concepts and new methods in the emerging scientific area known as quantum plasmas. In the near future, quantum effects in plasmas will be unavoidable, particularly in high density scenarios such as those in the next-generation intense laser-solid density plasma experiment or in compact astrophysics objects. Currently, plasmas are in the forefront of many intriguing questions around the transition from microscopic to macroscopic modeling of charged particle systems. Quantum Plasmas: an Hydrodynamic Approach is devoted to the quantum hydrodynamic model paradigm, which, unlike straight quantum kinetic theory, is much more amenable to investigate the nonlinear realm of quantum plasmas. The reader will have a step-by-step construction of the quantum hydrodynamic method applied to plasmas. The book is intended for specialists in classical plasma physics interested in methods of quantum plasma theory, as well as scientists interested in common aspects of two major areas of knowledge: plasma and quantum theory. In these chapters, the quantum hydrodynamic model for plasmas, which has continuously evolved over the past decade, will be summarized to include both the development and applications of the method.
Publisher: Springer Science & Business Media
ISBN: 1441982019
Category : Science
Languages : en
Pages : 215
Book Description
This book provides an overview of the basic concepts and new methods in the emerging scientific area known as quantum plasmas. In the near future, quantum effects in plasmas will be unavoidable, particularly in high density scenarios such as those in the next-generation intense laser-solid density plasma experiment or in compact astrophysics objects. Currently, plasmas are in the forefront of many intriguing questions around the transition from microscopic to macroscopic modeling of charged particle systems. Quantum Plasmas: an Hydrodynamic Approach is devoted to the quantum hydrodynamic model paradigm, which, unlike straight quantum kinetic theory, is much more amenable to investigate the nonlinear realm of quantum plasmas. The reader will have a step-by-step construction of the quantum hydrodynamic method applied to plasmas. The book is intended for specialists in classical plasma physics interested in methods of quantum plasma theory, as well as scientists interested in common aspects of two major areas of knowledge: plasma and quantum theory. In these chapters, the quantum hydrodynamic model for plasmas, which has continuously evolved over the past decade, will be summarized to include both the development and applications of the method.
Quantum Plasmadynamics
Author: D. B. Melrose
Publisher: Springer Science & Business Media
ISBN: 0387739025
Category : Science
Languages : en
Pages : 481
Book Description
The field of quantum plasmas has a long and diverse tradition. The subject is becoming of increasing interest. This book synthesizes two fields: classical kinetic theory of collisionless plasmas and quantum electrodynamics. The whole approach is new and not seen in other texts. The book therefore provides a comprehensive introduction to a more general formalism for plasma kinetic and dispersion theory.
Publisher: Springer Science & Business Media
ISBN: 0387739025
Category : Science
Languages : en
Pages : 481
Book Description
The field of quantum plasmas has a long and diverse tradition. The subject is becoming of increasing interest. This book synthesizes two fields: classical kinetic theory of collisionless plasmas and quantum electrodynamics. The whole approach is new and not seen in other texts. The book therefore provides a comprehensive introduction to a more general formalism for plasma kinetic and dispersion theory.
Quantum Statistics of Nonideal Plasmas
Author: Dietrich Kremp
Publisher: Springer Science & Business Media
ISBN: 3540263357
Category : Science
Languages : en
Pages : 536
Book Description
During the last decade impressive development and signi?cant advance of the physics of nonideal plasmas in astrophysics and in laboratories can be observed, creating new possibilities for experimental research. The enormous progress in laser technology, but also ion beam techniques, has opened new ways for the production and diagnosis of plasmas under extreme conditions, relevant for astrophysics and inertially con?ned fusion, and for the study of laser-matter interaction. In shock wave experiments, the equation of state and further properties of highly compressed plasmas can be investigated. This experimental progress has stimulated the further development of the statistical theory of nonideal plasmas. Many new results for thermodynamic and transport properties, for ionization kinetics, dielectric behavior, for the stopping power, laser-matter interaction, and relaxation processes have been achieved in the last decade. In addition to the powerful methods of quantum statistics and the theory of liquids, numerical simulations like path integral Monte Carlo methods and molecular dynamic simulations have been applied.
Publisher: Springer Science & Business Media
ISBN: 3540263357
Category : Science
Languages : en
Pages : 536
Book Description
During the last decade impressive development and signi?cant advance of the physics of nonideal plasmas in astrophysics and in laboratories can be observed, creating new possibilities for experimental research. The enormous progress in laser technology, but also ion beam techniques, has opened new ways for the production and diagnosis of plasmas under extreme conditions, relevant for astrophysics and inertially con?ned fusion, and for the study of laser-matter interaction. In shock wave experiments, the equation of state and further properties of highly compressed plasmas can be investigated. This experimental progress has stimulated the further development of the statistical theory of nonideal plasmas. Many new results for thermodynamic and transport properties, for ionization kinetics, dielectric behavior, for the stopping power, laser-matter interaction, and relaxation processes have been achieved in the last decade. In addition to the powerful methods of quantum statistics and the theory of liquids, numerical simulations like path integral Monte Carlo methods and molecular dynamic simulations have been applied.
Introduction to Complex Plasmas
Author: Michael Bonitz
Publisher: Springer Science & Business Media
ISBN: 3642105920
Category : Science
Languages : en
Pages : 451
Book Description
Complex plasmas differ from traditional plasmas in many ways: these are low-temperature high pressure systems containing nanometer to micrometer size particles which may be highly charged and strongly interacting. The particles may be chemically reacting or be in contact with solid surfaces, and the electrons may show quantum behaviour. These interesting properties have led to many applications of complex plasmas in technology, medicine and science. Yet complex plasmas are extremely complicated, both experimentally and theoretically, and require a variety of new approaches which go beyond standard plasma physics courses. This book fills this gap presenting an introduction to theory, experiment and computer simulation in this field. Based on tutorial lectures at a very successful recent Summer Institute, the presentation is ideally suited for graduate students, plasma physicists and experienced undergraduates.
Publisher: Springer Science & Business Media
ISBN: 3642105920
Category : Science
Languages : en
Pages : 451
Book Description
Complex plasmas differ from traditional plasmas in many ways: these are low-temperature high pressure systems containing nanometer to micrometer size particles which may be highly charged and strongly interacting. The particles may be chemically reacting or be in contact with solid surfaces, and the electrons may show quantum behaviour. These interesting properties have led to many applications of complex plasmas in technology, medicine and science. Yet complex plasmas are extremely complicated, both experimentally and theoretically, and require a variety of new approaches which go beyond standard plasma physics courses. This book fills this gap presenting an introduction to theory, experiment and computer simulation in this field. Based on tutorial lectures at a very successful recent Summer Institute, the presentation is ideally suited for graduate students, plasma physicists and experienced undergraduates.
Quantum Kinetic Theory
Author: Michael Bonitz
Publisher: Springer
ISBN: 3319241214
Category : Science
Languages : en
Pages : 412
Book Description
This book presents quantum kinetic theory in a comprehensive way. The focus is on density operator methods and on non-equilibrium Green functions. The theory allows to rigorously treat nonequilibrium dynamics in quantum many-body systems. Of particular interest are ultrafast processes in plasmas, condensed matter and trapped atoms that are stimulated by rapidly developing experiments with short pulse lasers and free electron lasers. To describe these experiments theoretically, the most powerful approach is given by non-Markovian quantum kinetic equations that are discussed in detail, including computational aspects.
Publisher: Springer
ISBN: 3319241214
Category : Science
Languages : en
Pages : 412
Book Description
This book presents quantum kinetic theory in a comprehensive way. The focus is on density operator methods and on non-equilibrium Green functions. The theory allows to rigorously treat nonequilibrium dynamics in quantum many-body systems. Of particular interest are ultrafast processes in plasmas, condensed matter and trapped atoms that are stimulated by rapidly developing experiments with short pulse lasers and free electron lasers. To describe these experiments theoretically, the most powerful approach is given by non-Markovian quantum kinetic equations that are discussed in detail, including computational aspects.
Complex Plasmas
Author: Michael Bonitz
Publisher: Springer Science & Business Media
ISBN: 3319054376
Category : Science
Languages : en
Pages : 495
Book Description
This book provides the reader with an introduction to the physics of complex plasmas, a discussion of the specific scientific and technical challenges they present and an overview of their potential technological applications. Complex plasmas differ from conventional high-temperature plasmas in several ways: they may contain additional species, including nano meter- to micrometer-sized particles, negative ions, molecules and radicals and they may exhibit strong correlations or quantum effects. This book introduces the classical and quantum mechanical approaches used to describe and simulate complex plasmas. It also covers some key experimental techniques used in the analysis of these plasmas, including calorimetric probe methods, IR absorption techniques and X-ray absorption spectroscopy. The final part of the book reviews the emerging applications of microcavity and microchannel plasmas, the synthesis and assembly of nanomaterials through plasma electrochemistry, the large-scale generation of ozone using microplasmas and novel applications of atmospheric-pressure non-thermal plasmas in dentistry. Going beyond the scope of traditional plasma texts, the presentation is very well suited for senior undergraduate, graduate students and postdoctoral researchers specializing in plasma physics.
Publisher: Springer Science & Business Media
ISBN: 3319054376
Category : Science
Languages : en
Pages : 495
Book Description
This book provides the reader with an introduction to the physics of complex plasmas, a discussion of the specific scientific and technical challenges they present and an overview of their potential technological applications. Complex plasmas differ from conventional high-temperature plasmas in several ways: they may contain additional species, including nano meter- to micrometer-sized particles, negative ions, molecules and radicals and they may exhibit strong correlations or quantum effects. This book introduces the classical and quantum mechanical approaches used to describe and simulate complex plasmas. It also covers some key experimental techniques used in the analysis of these plasmas, including calorimetric probe methods, IR absorption techniques and X-ray absorption spectroscopy. The final part of the book reviews the emerging applications of microcavity and microchannel plasmas, the synthesis and assembly of nanomaterials through plasma electrochemistry, the large-scale generation of ozone using microplasmas and novel applications of atmospheric-pressure non-thermal plasmas in dentistry. Going beyond the scope of traditional plasma texts, the presentation is very well suited for senior undergraduate, graduate students and postdoctoral researchers specializing in plasma physics.
The Physics of Plasmas
Author: T. J. M. Boyd
Publisher: Cambridge University Press
ISBN: 9780521459129
Category : Science
Languages : en
Pages : 548
Book Description
The Physics of Plasmas provides a comprehensive introduction to the subject, illustrating the basic theory with examples drawn from fusion, space and astrophysical plasmas. A particular strength of the book is its discussion of the various models used to describe plasma physics and the relationships between them. These include particle orbit theory, fluid equations, ideal and resistive magnetohydrodynamics, wave equations and kinetic theory. The reader will gain a firm grounding in the fundamentals, and develop this into an understanding of some of the more specialised topics. Throughout the text, there is an emphasis on the physical interpretation of plasma phenomena. Exercises are provided throughout. Advanced undergraduate and graduate students of physics, applied mathematics, astronomy and engineering will find a clear but rigorous explanation of the fundamental properties of plasmas with minimal mathematical formality. This book will also appeal to research physicists, nuclear and electrical engineers.
Publisher: Cambridge University Press
ISBN: 9780521459129
Category : Science
Languages : en
Pages : 548
Book Description
The Physics of Plasmas provides a comprehensive introduction to the subject, illustrating the basic theory with examples drawn from fusion, space and astrophysical plasmas. A particular strength of the book is its discussion of the various models used to describe plasma physics and the relationships between them. These include particle orbit theory, fluid equations, ideal and resistive magnetohydrodynamics, wave equations and kinetic theory. The reader will gain a firm grounding in the fundamentals, and develop this into an understanding of some of the more specialised topics. Throughout the text, there is an emphasis on the physical interpretation of plasma phenomena. Exercises are provided throughout. Advanced undergraduate and graduate students of physics, applied mathematics, astronomy and engineering will find a clear but rigorous explanation of the fundamental properties of plasmas with minimal mathematical formality. This book will also appeal to research physicists, nuclear and electrical engineers.
Emerging Developments and Applications of Low Temperature Plasma
Author: Shahzad, Aamir
Publisher: IGI Global
ISBN: 1799884007
Category : Science
Languages : en
Pages : 239
Book Description
Low temperature plasma in medicine is a new field that rose from the research in the application of cold plasmas in bioengineering. Plasma medicine is an innovative and promising multidisciplinary novel field of research covering plasma physics, life sciences, and clinical medicine to apply physical plasma for therapeutic applications. Emerging Developments and Applications of Low Temperature Plasma explores all areas of experimental, computational, and theoretical study of low temperature and atmospheric plasmas and provides a collection of exciting new research on the fundamental aspects of low temperature and pressure plasmas and their applications. Covering topics such as carbon nanotubes, foodborne pathogens, and plasma formation, this book is an essential resource for research groups, plasma-based industries, plasma aerodynamics industries, metal and cutlery industries, medical institutions, researchers, and academicians.
Publisher: IGI Global
ISBN: 1799884007
Category : Science
Languages : en
Pages : 239
Book Description
Low temperature plasma in medicine is a new field that rose from the research in the application of cold plasmas in bioengineering. Plasma medicine is an innovative and promising multidisciplinary novel field of research covering plasma physics, life sciences, and clinical medicine to apply physical plasma for therapeutic applications. Emerging Developments and Applications of Low Temperature Plasma explores all areas of experimental, computational, and theoretical study of low temperature and atmospheric plasmas and provides a collection of exciting new research on the fundamental aspects of low temperature and pressure plasmas and their applications. Covering topics such as carbon nanotubes, foodborne pathogens, and plasma formation, this book is an essential resource for research groups, plasma-based industries, plasma aerodynamics industries, metal and cutlery industries, medical institutions, researchers, and academicians.
Physics of Nonneutral Plasmas
Author: Davidson
Publisher: Allied Publishers
ISBN: 9788177648485
Category : Nonneutral plasma
Languages : en
Pages : 760
Book Description
Publisher: Allied Publishers
ISBN: 9788177648485
Category : Nonneutral plasma
Languages : en
Pages : 760
Book Description
Plasma Physics
Author: James E. Drummond
Publisher: Courier Corporation
ISBN: 0486320588
Category : Science
Languages : en
Pages : 402
Book Description
This edited collection of papers by pioneering experts was a standard text throughout the 1960s and 70s. A timeless introduction to foundations of plasma physics and a valuable source of historic context. 1961 edition.
Publisher: Courier Corporation
ISBN: 0486320588
Category : Science
Languages : en
Pages : 402
Book Description
This edited collection of papers by pioneering experts was a standard text throughout the 1960s and 70s. A timeless introduction to foundations of plasma physics and a valuable source of historic context. 1961 edition.