Author: Paul Blaise
Publisher: John Wiley & Sons
ISBN: 1118018028
Category : Science
Languages : en
Pages : 607
Book Description
An invaluable reference for an overall but simple approach to the complexity of quantum mechanics viewed through quantum oscillators Quantum oscillators play a fundamental role in many areas of physics; for instance, in chemical physics with molecular normal modes, in solid state physics with phonons, and in quantum theory of light with photons. Quantum Oscillators is a timely and visionary book which presents these intricate topics, broadly covering the properties of quantum oscillators which are usually dispersed in the literature at varying levels of detail and often combined with other physical topics. These properties are: time-independent behavior, reversible dynamics, thermal statistical equilibrium and irreversible evolution toward equilibrium, together with anharmonicity and anharmonic couplings. As an application of these intricate topics, special attention is devoted to infrared lineshapes of single and complex (undergoing Fermi resonance or Davydov coupling) damped H-bonded systems, providing key insights into this rapidly evolving area of chemical science. Quantum Oscillators is a long overdue update in the literature surrounding quantum oscillators, and serves as an excellent supplementary text in courses on IR spectroscopy and hydrogen bonding. It is a must-have addition to the library of any graduate or undergraduate student in chemical physics.
Quantum Oscillators
Author: Paul Blaise
Publisher: John Wiley & Sons
ISBN: 1118018028
Category : Science
Languages : en
Pages : 607
Book Description
An invaluable reference for an overall but simple approach to the complexity of quantum mechanics viewed through quantum oscillators Quantum oscillators play a fundamental role in many areas of physics; for instance, in chemical physics with molecular normal modes, in solid state physics with phonons, and in quantum theory of light with photons. Quantum Oscillators is a timely and visionary book which presents these intricate topics, broadly covering the properties of quantum oscillators which are usually dispersed in the literature at varying levels of detail and often combined with other physical topics. These properties are: time-independent behavior, reversible dynamics, thermal statistical equilibrium and irreversible evolution toward equilibrium, together with anharmonicity and anharmonic couplings. As an application of these intricate topics, special attention is devoted to infrared lineshapes of single and complex (undergoing Fermi resonance or Davydov coupling) damped H-bonded systems, providing key insights into this rapidly evolving area of chemical science. Quantum Oscillators is a long overdue update in the literature surrounding quantum oscillators, and serves as an excellent supplementary text in courses on IR spectroscopy and hydrogen bonding. It is a must-have addition to the library of any graduate or undergraduate student in chemical physics.
Publisher: John Wiley & Sons
ISBN: 1118018028
Category : Science
Languages : en
Pages : 607
Book Description
An invaluable reference for an overall but simple approach to the complexity of quantum mechanics viewed through quantum oscillators Quantum oscillators play a fundamental role in many areas of physics; for instance, in chemical physics with molecular normal modes, in solid state physics with phonons, and in quantum theory of light with photons. Quantum Oscillators is a timely and visionary book which presents these intricate topics, broadly covering the properties of quantum oscillators which are usually dispersed in the literature at varying levels of detail and often combined with other physical topics. These properties are: time-independent behavior, reversible dynamics, thermal statistical equilibrium and irreversible evolution toward equilibrium, together with anharmonicity and anharmonic couplings. As an application of these intricate topics, special attention is devoted to infrared lineshapes of single and complex (undergoing Fermi resonance or Davydov coupling) damped H-bonded systems, providing key insights into this rapidly evolving area of chemical science. Quantum Oscillators is a long overdue update in the literature surrounding quantum oscillators, and serves as an excellent supplementary text in courses on IR spectroscopy and hydrogen bonding. It is a must-have addition to the library of any graduate or undergraduate student in chemical physics.
Introduction to Classical and Quantum Harmonic Oscillators
Author: S. C. Bloch
Publisher: John Wiley & Sons
ISBN: 1118710827
Category : Science
Languages : en
Pages : 343
Book Description
From conch shells to lasers . harmonic oscillators, the timeless scientific phenomenon As intriguing to Galileo as they are to scientists today, harmonic oscillators have provided a simple and compelling paradigm for understanding the complexities that underlie some of nature's and mankind's most fascinating creations. From early string and wind instruments fashioned from bows and seashells to the intense precision of lasers, harmonic oscillators have existed in various forms, as objects of beauty and scientific use. And harmonic oscillation has endured as one of science's most fascinating concepts, key to understanding the physical universe and a linchpin in fields as diverse as mechanics, electromagnetics, electronics, optics, acoustics, and quantum mechanics. Complete with disk, Introduction to Classical and Quantum Harmonic Oscillators is a hands-on guide to understanding how harmonic oscillators function and the analytical systems used to describe them. Professionals and students in electrical engineering, mechanical engineering, physics, and chemistry will gain insight in applying these analytical techniques to even more complex systems. With the help of spreadsheets ready to run on Microsoft Excel (or easily imported to Quattro Pro or Lotus 1-2-3), users will be able to thoroughly and easily examine concepts and questions, of considerable difficulty and breadth, without painstaking calculation. The software allows users to imagine, speculate, and ask "what if .?" and then instantly see the answer. You're not only able to instantly visualize results but also to interface with data acquisition boards to import real-world information. The graphic capability of the software allows you to view your work in color and watch new results blossom as you change parameters and initial conditions. Introduction to Classical and Quantum Harmonic Oscillators is a practical, graphically enhanced excursion into the world of harmonic oscillators that lets the reader experience and understand their utility and unique contribution to scientific understanding. It also describes one of the enduring themes in scientific inquiry, begun in antiquity and with an as yet unimagined future.
Publisher: John Wiley & Sons
ISBN: 1118710827
Category : Science
Languages : en
Pages : 343
Book Description
From conch shells to lasers . harmonic oscillators, the timeless scientific phenomenon As intriguing to Galileo as they are to scientists today, harmonic oscillators have provided a simple and compelling paradigm for understanding the complexities that underlie some of nature's and mankind's most fascinating creations. From early string and wind instruments fashioned from bows and seashells to the intense precision of lasers, harmonic oscillators have existed in various forms, as objects of beauty and scientific use. And harmonic oscillation has endured as one of science's most fascinating concepts, key to understanding the physical universe and a linchpin in fields as diverse as mechanics, electromagnetics, electronics, optics, acoustics, and quantum mechanics. Complete with disk, Introduction to Classical and Quantum Harmonic Oscillators is a hands-on guide to understanding how harmonic oscillators function and the analytical systems used to describe them. Professionals and students in electrical engineering, mechanical engineering, physics, and chemistry will gain insight in applying these analytical techniques to even more complex systems. With the help of spreadsheets ready to run on Microsoft Excel (or easily imported to Quattro Pro or Lotus 1-2-3), users will be able to thoroughly and easily examine concepts and questions, of considerable difficulty and breadth, without painstaking calculation. The software allows users to imagine, speculate, and ask "what if .?" and then instantly see the answer. You're not only able to instantly visualize results but also to interface with data acquisition boards to import real-world information. The graphic capability of the software allows you to view your work in color and watch new results blossom as you change parameters and initial conditions. Introduction to Classical and Quantum Harmonic Oscillators is a practical, graphically enhanced excursion into the world of harmonic oscillators that lets the reader experience and understand their utility and unique contribution to scientific understanding. It also describes one of the enduring themes in scientific inquiry, begun in antiquity and with an as yet unimagined future.
Harmonic Oscillators
Author: Yilun Shang
Publisher:
ISBN: 9781536158113
Category : Science
Languages : en
Pages : 214
Book Description
"This book gathers state-of-the-art advances on harmonic oscillators including their types, functions, and applications. In Chapter 1, Neetik and Amlan have discussed the recent progresses of information theoretic tools in the context of free and confined harmonic oscillator. Confined quantum systems have provided appreciable interest in areas of physics, chemistry, biology, etc., since its inception. A particle under extreme pressure environment unfolds many fascinating, notable physical and chemical changes. The desired effect is achieved by reducing the spatial boundary from infinity to a finite region. Similarly, in the last decade, information measures were investigated extensively in diverse quantum problems, in both free and constrained situations. The most prominent amongst these are: Fisher information, Shannon entropy, Renyi entropy, Tsallis entropy, Onicescu energy and several complexities. Arguably, these are the most effective measures of uncertainty, as they do not make any reference to some specific points of a respective Hilbert space. These have been invoked to explain several physic-chemical properties of a system under investigation. Kullback Leibler divergence or relative entropy describes how a given probability distribution shifts from a reference distribution function. This characterizes a measure of discrimination between two states. In other words, it extracts the change of information in going from one state to another. In Chapter 2, Nabakumar, Subhasree, and Paulami have revisited classical-quantum correspondence in the context of linear Simple Harmonic Oscillator (SHO). According to Bohr's correspondence principle, quantum mechanically calculated results match with the classically expected results when quantum number is very high. Classical quantum correspondence may also be visualized in the limit when the action integral is much greater than Planck's constant. When de-Broglie wave length associated with a particle is much larger than system size, then quantum mechanical results also match with the classical results. In the context of dynamics, Ehrenfest equation of motion is used in quantum domain, which is analogous to classical Newton's equation of motion. SHO is one of the most important systems for several reasons. It is one of the few exactly solvable problems. Any stable molecular potential can be approximated by SHO near the equilibrium point. This builds the foundation for the understanding of complex modes of vibration in large molecules, the motion of atoms in a solid lattice, the theory of heat capacity, vibration motion of nuclei in molecule etc. The authors have revisited the common solution techniques and important properties of both classical and quantum linear SHO. Then they focused on probability distribution, quantum mechanical tunneling, classical and quantum dynamics of position, momentum and their actuations, viral theorems, etc. and also analyzed how quantum mechanical results finally tend to classical results in the high quantum number limit. In Chapter 3, Neeraj has discussed the nature of atomic motions, sometimes referred to as lattice vibrations. The lattice dynamics deals with the vibrations of the atoms inside the crystals. In order to write the dynamic equations of the motion of crystal atoms, we need to describe an inter-atomic interaction. Therefore, it is natural to start the study of the lattice dynamics with the case of small harmonic vibrations. The dynamics of one-dimensional and two-dimensional vibrations of monatomic and diatomic crystals can be understood by using the simple model forces based on harmonic approximation. This harmonic approximation is related to a simple ball-spring model. According to this model, each atom is coupled with the neighboring atoms by spring constants. The collective motion of atoms leads to a distinct traveling wave over the whole crystal, leading to the collective motion, so-called phonon. The simple ball-spring model enlightens us some of the significant common features of lattice dynamics that have been discussed throughout this chapter. Further, this chapter helps in understanding the quantization energy of a harmonic oscillation and the concept of phonon"--
Publisher:
ISBN: 9781536158113
Category : Science
Languages : en
Pages : 214
Book Description
"This book gathers state-of-the-art advances on harmonic oscillators including their types, functions, and applications. In Chapter 1, Neetik and Amlan have discussed the recent progresses of information theoretic tools in the context of free and confined harmonic oscillator. Confined quantum systems have provided appreciable interest in areas of physics, chemistry, biology, etc., since its inception. A particle under extreme pressure environment unfolds many fascinating, notable physical and chemical changes. The desired effect is achieved by reducing the spatial boundary from infinity to a finite region. Similarly, in the last decade, information measures were investigated extensively in diverse quantum problems, in both free and constrained situations. The most prominent amongst these are: Fisher information, Shannon entropy, Renyi entropy, Tsallis entropy, Onicescu energy and several complexities. Arguably, these are the most effective measures of uncertainty, as they do not make any reference to some specific points of a respective Hilbert space. These have been invoked to explain several physic-chemical properties of a system under investigation. Kullback Leibler divergence or relative entropy describes how a given probability distribution shifts from a reference distribution function. This characterizes a measure of discrimination between two states. In other words, it extracts the change of information in going from one state to another. In Chapter 2, Nabakumar, Subhasree, and Paulami have revisited classical-quantum correspondence in the context of linear Simple Harmonic Oscillator (SHO). According to Bohr's correspondence principle, quantum mechanically calculated results match with the classically expected results when quantum number is very high. Classical quantum correspondence may also be visualized in the limit when the action integral is much greater than Planck's constant. When de-Broglie wave length associated with a particle is much larger than system size, then quantum mechanical results also match with the classical results. In the context of dynamics, Ehrenfest equation of motion is used in quantum domain, which is analogous to classical Newton's equation of motion. SHO is one of the most important systems for several reasons. It is one of the few exactly solvable problems. Any stable molecular potential can be approximated by SHO near the equilibrium point. This builds the foundation for the understanding of complex modes of vibration in large molecules, the motion of atoms in a solid lattice, the theory of heat capacity, vibration motion of nuclei in molecule etc. The authors have revisited the common solution techniques and important properties of both classical and quantum linear SHO. Then they focused on probability distribution, quantum mechanical tunneling, classical and quantum dynamics of position, momentum and their actuations, viral theorems, etc. and also analyzed how quantum mechanical results finally tend to classical results in the high quantum number limit. In Chapter 3, Neeraj has discussed the nature of atomic motions, sometimes referred to as lattice vibrations. The lattice dynamics deals with the vibrations of the atoms inside the crystals. In order to write the dynamic equations of the motion of crystal atoms, we need to describe an inter-atomic interaction. Therefore, it is natural to start the study of the lattice dynamics with the case of small harmonic vibrations. The dynamics of one-dimensional and two-dimensional vibrations of monatomic and diatomic crystals can be understood by using the simple model forces based on harmonic approximation. This harmonic approximation is related to a simple ball-spring model. According to this model, each atom is coupled with the neighboring atoms by spring constants. The collective motion of atoms leads to a distinct traveling wave over the whole crystal, leading to the collective motion, so-called phonon. The simple ball-spring model enlightens us some of the significant common features of lattice dynamics that have been discussed throughout this chapter. Further, this chapter helps in understanding the quantization energy of a harmonic oscillation and the concept of phonon"--
Waves and Oscillations
Author: Walter Fox Smith
Publisher: Oxford University Press
ISBN: 019539349X
Category : Science
Languages : en
Pages : 416
Book Description
This lively textbook differs from others on the subject by its usefulness as a conceptual and mathematical preparation for the study of quantum mechanics, by its emphasis on a variety of learning tools aimed at fostering the student's self-awareness of learning, and by its frequent connections to current research.
Publisher: Oxford University Press
ISBN: 019539349X
Category : Science
Languages : en
Pages : 416
Book Description
This lively textbook differs from others on the subject by its usefulness as a conceptual and mathematical preparation for the study of quantum mechanics, by its emphasis on a variety of learning tools aimed at fostering the student's self-awareness of learning, and by its frequent connections to current research.
University Physics
Author: OpenStax
Publisher:
ISBN: 9781680920451
Category : Science
Languages : en
Pages : 622
Book Description
University Physics is a three-volume collection that meets the scope and sequence requirements for two- and three-semester calculus-based physics courses. Volume 1 covers mechanics, sound, oscillations, and waves. Volume 2 covers thermodynamics, electricity and magnetism, and Volume 3 covers optics and modern physics. This textbook emphasizes connections between between theory and application, making physics concepts interesting and accessible to students while maintaining the mathematical rigor inherent in the subject. Frequent, strong examples focus on how to approach a problem, how to work with the equations, and how to check and generalize the result. The text and images in this textbook are grayscale.
Publisher:
ISBN: 9781680920451
Category : Science
Languages : en
Pages : 622
Book Description
University Physics is a three-volume collection that meets the scope and sequence requirements for two- and three-semester calculus-based physics courses. Volume 1 covers mechanics, sound, oscillations, and waves. Volume 2 covers thermodynamics, electricity and magnetism, and Volume 3 covers optics and modern physics. This textbook emphasizes connections between between theory and application, making physics concepts interesting and accessible to students while maintaining the mathematical rigor inherent in the subject. Frequent, strong examples focus on how to approach a problem, how to work with the equations, and how to check and generalize the result. The text and images in this textbook are grayscale.
Fluctuating Nonlinear Oscillators
Author: Mark Dykman
Publisher: Oxford University Press
ISBN: 019969138X
Category : Mathematics
Languages : en
Pages : 446
Book Description
The book provides a unifying insight into a broad range of phenomena displayed by vibrational systems of current interest. The chapters complement each other to give an account of the major fundamental results and applications in quantum information, condensed matter physics, and engineering.
Publisher: Oxford University Press
ISBN: 019969138X
Category : Mathematics
Languages : en
Pages : 446
Book Description
The book provides a unifying insight into a broad range of phenomena displayed by vibrational systems of current interest. The chapters complement each other to give an account of the major fundamental results and applications in quantum information, condensed matter physics, and engineering.
Oscillators
Author: Patrice Salzenstein
Publisher: BoD – Books on Demand
ISBN: 1789858372
Category : Mathematics
Languages : en
Pages : 126
Book Description
An oscillator is dedicated to the generation of signals. It is used in computers, telecoms, watchmaking, astronomy, and metrology. It can be a pendulum, an electronic oscillator based on quartz technology, an optoelectronic oscillator, or an atomic clock, depending on its application. Since water clocks of antiquity, mechanical clocks invented during the thirteenth century, and the discovery of piezoelectricity by Jacques and Pierre Curie in 1880, oscillators have made great progress. This book does not attempt to tell the story of oscillators, but rather provides an overview of particular oscillator structures through examples from mathematics to oscillators, and from the millimeter scale to the vibration of a building, focusing on recent developments, as we live in a time when technology and mathematical analysis play a vital role.
Publisher: BoD – Books on Demand
ISBN: 1789858372
Category : Mathematics
Languages : en
Pages : 126
Book Description
An oscillator is dedicated to the generation of signals. It is used in computers, telecoms, watchmaking, astronomy, and metrology. It can be a pendulum, an electronic oscillator based on quartz technology, an optoelectronic oscillator, or an atomic clock, depending on its application. Since water clocks of antiquity, mechanical clocks invented during the thirteenth century, and the discovery of piezoelectricity by Jacques and Pierre Curie in 1880, oscillators have made great progress. This book does not attempt to tell the story of oscillators, but rather provides an overview of particular oscillator structures through examples from mathematics to oscillators, and from the millimeter scale to the vibration of a building, focusing on recent developments, as we live in a time when technology and mathematical analysis play a vital role.
Harmonic Oscillators and Two-By-Two Matrices in Symmetry Problems in Physics
Author: Young Suh Kim
Publisher: MDPI
ISBN: 3038425001
Category : Mathematics
Languages : en
Pages : 369
Book Description
This book is a printed edition of the Special Issue "Harmonic Oscillators In Modern Physics" that was published in Symmetry
Publisher: MDPI
ISBN: 3038425001
Category : Mathematics
Languages : en
Pages : 369
Book Description
This book is a printed edition of the Special Issue "Harmonic Oscillators In Modern Physics" that was published in Symmetry
Laser Optoelectronic Oscillators
Author: Alexander A. Bortsov
Publisher: Springer Nature
ISBN: 3030457001
Category : Science
Languages : en
Pages : 548
Book Description
This book is devoted to the theoretical and experimental investigation of the optoelectronic oscillator (OEO) with direct and external modulation of laser emission. Such devices, sources of precision radio frequency oscillations using laser excitation, are novel and technologically relevant, with manifold possible applications. The book includes a review of the present state of the theory and generation techniques in microwave and mm-wave ranges for traditional and optoelectronic oscillators, description of OEO construction and operation principles, theoretical oscillation analysis and mathematical description of the relevant semi-classical laser physics, and investigation of the power spectral density of noises. Technical features and advantages of OEOs with external and direct modulation of laser emission are discussed together with functional diagrams. The characteristics of OEOs are compared with other traditional RF oscillators, such as quartz, surface acoustic waves, and oscillators with electromagnetic wave cavities. Special attention is paid to Q-factors and phase noises of RF carriers at small offsets. The authors discuss the technical characteristics of modern optoelectronic methods for precision RF oscillation formation, such as commercial large-dimension and compact quantum frequency standards with optical pumping on cesium and rubidium cells. This book is aimed at scientists and engineers in academia and industry who work with sources of microwave and mm-wave signals.
Publisher: Springer Nature
ISBN: 3030457001
Category : Science
Languages : en
Pages : 548
Book Description
This book is devoted to the theoretical and experimental investigation of the optoelectronic oscillator (OEO) with direct and external modulation of laser emission. Such devices, sources of precision radio frequency oscillations using laser excitation, are novel and technologically relevant, with manifold possible applications. The book includes a review of the present state of the theory and generation techniques in microwave and mm-wave ranges for traditional and optoelectronic oscillators, description of OEO construction and operation principles, theoretical oscillation analysis and mathematical description of the relevant semi-classical laser physics, and investigation of the power spectral density of noises. Technical features and advantages of OEOs with external and direct modulation of laser emission are discussed together with functional diagrams. The characteristics of OEOs are compared with other traditional RF oscillators, such as quartz, surface acoustic waves, and oscillators with electromagnetic wave cavities. Special attention is paid to Q-factors and phase noises of RF carriers at small offsets. The authors discuss the technical characteristics of modern optoelectronic methods for precision RF oscillation formation, such as commercial large-dimension and compact quantum frequency standards with optical pumping on cesium and rubidium cells. This book is aimed at scientists and engineers in academia and industry who work with sources of microwave and mm-wave signals.
The Physics of Quantum Mechanics
Author: James Binney
Publisher: Oxford University Press, USA
ISBN: 0199688575
Category : Science
Languages : en
Pages : 408
Book Description
This title gives students a good understanding of how quantum mechanics describes the material world. The text stresses the continuity between the quantum world and the classical world, which is merely an approximation to the quantum world.
Publisher: Oxford University Press, USA
ISBN: 0199688575
Category : Science
Languages : en
Pages : 408
Book Description
This title gives students a good understanding of how quantum mechanics describes the material world. The text stresses the continuity between the quantum world and the classical world, which is merely an approximation to the quantum world.