Quantum Methods with Mathematica®

Quantum Methods with Mathematica® PDF Author: James F. Feagin
Publisher: Springer Science & Business Media
ISBN: 9780387953656
Category : Science
Languages : en
Pages : 508

Get Book Here

Book Description
Feagin's book was the first publication dealing with Quantum Mechanics using Mathematica, the popular software distributed by Wolfram Research, and designed to facilitate scientists and engineers to do difficult scientific computations more quickly and more easily. Quantum Methods with Mathematica, the first book of ist kind, has achieved worldwide success and critical acclaim.

Quantum Methods with Mathematica®

Quantum Methods with Mathematica® PDF Author: James F. Feagin
Publisher: Springer Science & Business Media
ISBN: 9780387953656
Category : Science
Languages : en
Pages : 508

Get Book Here

Book Description
Feagin's book was the first publication dealing with Quantum Mechanics using Mathematica, the popular software distributed by Wolfram Research, and designed to facilitate scientists and engineers to do difficult scientific computations more quickly and more easily. Quantum Methods with Mathematica, the first book of ist kind, has achieved worldwide success and critical acclaim.

Quantum Methods with Mathematica®

Quantum Methods with Mathematica® PDF Author: James F. Feagin
Publisher: Springer
ISBN: 9781461243281
Category : Science
Languages : en
Pages : 0

Get Book Here

Book Description
Feagin's book was the first publication dealing with Quantum Mechanics using Mathematica, the popular software distributed by Wolfram Research, and designed to facilitate scientists and engineers to do difficult scientific computations more quickly and more easily. Quantum Methods with Mathematica, the first book of ist kind, has achieved worldwide success and critical acclaim.

Using Mathematica for Quantum Mechanics

Using Mathematica for Quantum Mechanics PDF Author: Roman Schmied
Publisher: Springer Nature
ISBN: 9811375887
Category : Science
Languages : en
Pages : 193

Get Book Here

Book Description
This book revisits many of the problems encountered in introductory quantum mechanics, focusing on computer implementations for finding and visualizing analytical and numerical solutions. It subsequently uses these implementations as building blocks to solve more complex problems, such as coherent laser-driven dynamics in the Rubidium hyperfine structure or the Rashba interaction of an electron moving in 2D. The simulations are highlighted using the programming language Mathematica. No prior knowledge of Mathematica is needed; alternatives, such as Matlab, Python, or Maple, can also be used.

Quantum Methods with Mathematica

Quantum Methods with Mathematica PDF Author: James M. Feagin
Publisher:
ISBN: 9780387948553
Category :
Languages : en
Pages : 510

Get Book Here

Book Description
"Quantum Methods with Mathematica" has achieved worldwide success and critical acclaim in its first edition, which was published in 1994.

Mathematics of Classical and Quantum Physics

Mathematics of Classical and Quantum Physics PDF Author: Frederick W. Byron
Publisher: Courier Corporation
ISBN: 0486135063
Category : Science
Languages : en
Pages : 674

Get Book Here

Book Description
Graduate-level text offers unified treatment of mathematics applicable to many branches of physics. Theory of vector spaces, analytic function theory, theory of integral equations, group theory, and more. Many problems. Bibliography.

Mathematica for Theoretical Physics

Mathematica for Theoretical Physics PDF Author: Gerd Baumann
Publisher: Springer Science & Business Media
ISBN: 0387251138
Category : Science
Languages : en
Pages : 407

Get Book Here

Book Description
Class-tested textbook that shows readers how to solve physical problems and deal with their underlying theoretical concepts while using Mathematica® to derive numeric and symbolic solutions. Delivers dozens of fully interactive examples for learning and implementation, constants and formulae can readily be altered and adapted for the user’s purposes. New edition offers enlarged two-volume format suitable to courses in mechanics and electrodynamics, while offering dozens of new examples and a more rewarding interactive learning environment.

Quantum Mechanics Using Computer Algebra: Includes Sample Programs In C++, Symbolicc++, Maxima, Maple, And Mathematica (2nd Edition)

Quantum Mechanics Using Computer Algebra: Includes Sample Programs In C++, Symbolicc++, Maxima, Maple, And Mathematica (2nd Edition) PDF Author: Willi-hans Steeb
Publisher: World Scientific Publishing Company
ISBN: 9813107898
Category : Mathematics
Languages : en
Pages : 245

Get Book Here

Book Description
Solving problems in quantum mechanics is an essential skill and research activity for physicists, mathematicians, engineers and others. Nowadays, the labor of scientific computation has been greatly eased by the advent of computer algebra packages, which do not merely perform number crunching, but also enable users to manipulate algebraic expressions and equations symbolically. For example, the manipulations of noncommutative operators, differentiation and integration can now be carried out algebraically by the computer algebra package.This book collects standard and advanced methods in quantum mechanics and implements them using SymbolicC++ and Maxima, two popular computer algebra packages. Throughout, the sample programs and their outputs are accompanied with explanatory text of the underlying mathematics and physics explained in detail. Selected problems have also been implemented using two other popular packages — Mathematica and Maple — while some problems are implemented in C++.Modern developments in quantum theory are covered extensively, beyond the standard quantum mechanical techniques. The new research topics added to this second edition are: entanglement, teleportation, Berry phase, Morse oscillator, Magnus expansion, wavelets, Pauli and Clifford groups, coupled Bose-Fermi systems, super-Lie algebras, etc.

Mathematical Concepts of Quantum Mechanics

Mathematical Concepts of Quantum Mechanics PDF Author: Stephen J. Gustafson
Publisher: Springer Science & Business Media
ISBN: 3642218660
Category : Mathematics
Languages : en
Pages : 380

Get Book Here

Book Description
The book gives a streamlined introduction to quantum mechanics while describing the basic mathematical structures underpinning this discipline. Starting with an overview of key physical experiments illustrating the origin of the physical foundations, the book proceeds with a description of the basic notions of quantum mechanics and their mathematical content. It then makes its way to topics of current interest, specifically those in which mathematics plays an important role. The more advanced topics presented include many-body systems, modern perturbation theory, path integrals, the theory of resonances, quantum statistics, mean-field theory, second quantization, the theory of radiation (non-relativistic quantum electrodynamics), and the renormalization group. With different selections of chapters, the book can serve as a text for an introductory, intermediate, or advanced course in quantum mechanics. The last four chapters could also serve as an introductory course in quantum field theory.

Quantum Mechanics for Mathematicians

Quantum Mechanics for Mathematicians PDF Author: Leon Armenovich Takhtadzhi͡an
Publisher: American Mathematical Soc.
ISBN: 0821846302
Category : Mathematics
Languages : en
Pages : 410

Get Book Here

Book Description
Presents a comprehensive treatment of quantum mechanics from a mathematics perspective. Including traditional topics, like classical mechanics, mathematical foundations of quantum mechanics, quantization, and the Schrodinger equation, this book gives a mathematical treatment of systems of identical particles with spin.

Mathematical Methods of Quantum Optics

Mathematical Methods of Quantum Optics PDF Author: Ravinder R. Puri
Publisher: Springer
ISBN: 3540449531
Category : Science
Languages : en
Pages : 291

Get Book Here

Book Description
Starting from first principles, this reference treats the theoretical aspects of quantum optics. It develops a unified approach for determining the dynamics of a two-level and three-level atom in combinations of quantized field under certain conditions.