Quantum Dot Channel Field-effect Transistors and Non-volatile Memories: Fabrication and Simulation

Quantum Dot Channel Field-effect Transistors and Non-volatile Memories: Fabrication and Simulation PDF Author: Jun Kondo
Publisher:
ISBN:
Category : Electronic dissertations
Languages : en
Pages :

Get Book Here

Book Description
Quantum dot channel (QDC) and Quantum dot gate (QDG) field effect transistors (FETs) have been fabricated on crystalline Si and poly Si thin films using cladded Si and Ge quantum dots. In particular, this thesis presents modeling and fabrication of quantum dot channel field effect transistors (QDC-FETs) using cladded Ge quantum dots on poly-Si thin films grown on silicon-on-insulator (SOI) substrates. HfAlO2 high-k dielectric layers are used for the gate dielectric. QDC-FETs exhibit multi-state I-V characteristics which enable 2-bit processing, and reduce FET count and power dissipation, and are expected to make a significant impact on the digital circuit design. Germanium quantum dot QDC-FETs provide higher electron mobility than conventional polysilicon FETs, which is comparable to crystalline silicon. Quantum dot channel FETs are also configured as floating gate quantum dot nonvolatile memories (QDC-QDNVMs). In NVMs, we use floating gate comprising of GeOx-Ge quantum dots. QD nonvolatile memories (QD-NVMs) are fabricated on crystalline silicon substrates. HfAlO2 high-k insulator layers are used for both tunnel gate oxide as well as control gate dielectric. QDC-NVMs not only provide significantly higher drain current ID, but also higher threshold voltage shifts (DVTH), and exhibit potential for fabricating multi-bit nonvolatile memories.

Quantum Dot Channel Field-effect Transistors and Non-volatile Memories: Fabrication and Simulation

Quantum Dot Channel Field-effect Transistors and Non-volatile Memories: Fabrication and Simulation PDF Author: Jun Kondo
Publisher:
ISBN:
Category : Electronic dissertations
Languages : en
Pages :

Get Book Here

Book Description
Quantum dot channel (QDC) and Quantum dot gate (QDG) field effect transistors (FETs) have been fabricated on crystalline Si and poly Si thin films using cladded Si and Ge quantum dots. In particular, this thesis presents modeling and fabrication of quantum dot channel field effect transistors (QDC-FETs) using cladded Ge quantum dots on poly-Si thin films grown on silicon-on-insulator (SOI) substrates. HfAlO2 high-k dielectric layers are used for the gate dielectric. QDC-FETs exhibit multi-state I-V characteristics which enable 2-bit processing, and reduce FET count and power dissipation, and are expected to make a significant impact on the digital circuit design. Germanium quantum dot QDC-FETs provide higher electron mobility than conventional polysilicon FETs, which is comparable to crystalline silicon. Quantum dot channel FETs are also configured as floating gate quantum dot nonvolatile memories (QDC-QDNVMs). In NVMs, we use floating gate comprising of GeOx-Ge quantum dots. QD nonvolatile memories (QD-NVMs) are fabricated on crystalline silicon substrates. HfAlO2 high-k insulator layers are used for both tunnel gate oxide as well as control gate dielectric. QDC-NVMs not only provide significantly higher drain current ID, but also higher threshold voltage shifts (DVTH), and exhibit potential for fabricating multi-bit nonvolatile memories.

Novel Three-state Quantum Dot Gate Field Effect Transistor

Novel Three-state Quantum Dot Gate Field Effect Transistor PDF Author: Supriya Karmakar
Publisher: Springer Science & Business Media
ISBN: 8132216350
Category : Technology & Engineering
Languages : en
Pages : 147

Get Book Here

Book Description
The book presents the fabrication and circuit modeling of quantum dot gate field effect transistor (QDGFET) and quantum dot gate NMOS inverter (QDNMOS inverter). It also introduces the development of a circuit model of QDGFET based on Berkley Short Channel IGFET model (BSIM). Different ternary logic circuits based on QDGFET are also investigated in this book. Advanced circuit such as three-bit and six bit analog-to-digital converter (ADC) and digital-to-analog converter (DAC) were also simulated.

Optimizing Fabrication and Modeling of Quantum Dot Superlattice for Fets and Nonvolatile Memories

Optimizing Fabrication and Modeling of Quantum Dot Superlattice for Fets and Nonvolatile Memories PDF Author: Pial Mirdha
Publisher:
ISBN:
Category : Electronic dissertations
Languages : en
Pages :

Get Book Here

Book Description
Quantum Dot Superlattice (QDSL) are novel structures which can be applied to transistors and memory devices to produce unique current voltage characteristics. QDSL are made of Silicon and Germanium with an inner intrinsic layer surrounded by their respective oxides and in the single digit nanometer range. When used in transistors they have shown to induce 3 to 4 states for Multi-Valued Logic (MVL). When applied to memory they have been demonstrated to retain 2 bits of charge which instantly double the memory density. For commercial application they must produce consistent and repeatable current voltage characteristics, the current QDSL structures consist of only two layers of quantum dots which is not a robust design. This thesis demonstrates the utility of using QDSL by designing MVL circuit which consume less power while still producing higher computational speed when compared to conventional cmos based circuits. Additionally, for reproducibility and stability of current voltage characteristics, a novel 4 layer of both single and mixed quantum dots are demonstrated. The stacking of QDSL of more than 2 layers allows greater charge storage whic can add lead to more distinct MVL and memory states. This QDSL structure is verified using AFM. Also demonstrated is the capability to assemble only one layer of QDSL. Finally a physics and surface potential based numerical model is developed which incorporates the QDSL structures charge storage. This is can be used to model transistors and memory for circuit application or for individual device physics analysis for optimization. The QDSL charge storage in modeled in a computationally less intensive way when compared to their derivation from quantum mechanics.

Quantum Dot Gate Nonvolatile Memory

Quantum Dot Gate Nonvolatile Memory PDF Author: Ravi Shankar R. Velampati
Publisher:
ISBN:
Category :
Languages : en
Pages : 230

Get Book Here

Book Description


Design, Simulation and Construction of Field Effect Transistors

Design, Simulation and Construction of Field Effect Transistors PDF Author: Dhanasekaran Vikraman
Publisher: BoD – Books on Demand
ISBN: 1789234166
Category : Technology & Engineering
Languages : en
Pages : 168

Get Book Here

Book Description
In recent years, research on microelectronics has been specifically focused on the proposition of efficient alternative methodologies and materials to fabricate feasible integrated circuits. This book provides a general background of thin film transistors and their simulations and constructions. The contents of the book are broadly classified into two topics: design and simulation of FETs and construction of FETs. All the authors anticipate that the provided chapters will act as a single source of reference for the design, simulation and construction of FETs. This edited book will help microelectronics researchers with their endeavors and would be a great addition to the realm of semiconductor physics.

Self-Organized Quantum Dots for Memories

Self-Organized Quantum Dots for Memories PDF Author: Tobias Nowozin
Publisher: Springer Science & Business Media
ISBN: 3319019708
Category : Technology & Engineering
Languages : en
Pages : 163

Get Book Here

Book Description
Today’s semiconductor memory market is divided between two types of memory: DRAM and Flash. Each has its own advantages and disadvantages. While DRAM is fast but volatile, Flash is non-volatile but slow. A memory system based on self-organized quantum dots (QDs) as storage node could combine the advantages of modern DRAM and Flash, thus merging the latter’s non-volatility with very fast write times. This thesis investigates the electronic properties of and carrier dynamics in self-organized quantum dots by means of time-resolved capacitance spectroscopy and time-resolved current measurements. The first aim is to study the localization energy of various QD systems in order to assess the potential of increasing the storage time in QDs to non-volatility. Surprisingly, it is found that the major impact of carrier capture cross-sections of QDs is to influence, and at times counterbalance, carrier storage in addition to the localization energy. The second aim is to study the coupling between a layer of self-organized QDs and a two-dimensional hole gas (2DHG), which is relevant for the read-out process in memory systems. The investigation yields the discovery of the many-particle ground states in the QD ensemble. In addition to its technological relevance, the thesis also offers new insights into the fascinating field of nanostructure physics.

High Mobility and Quantum Well Transistors

High Mobility and Quantum Well Transistors PDF Author: Geert Hellings
Publisher: Springer Science & Business Media
ISBN: 9400763409
Category : Technology & Engineering
Languages : en
Pages : 154

Get Book Here

Book Description
For many decades, the semiconductor industry has miniaturized transistors, delivering increased computing power to consumers at decreased cost. However, mere transistor downsizing does no longer provide the same improvements. One interesting option to further improve transistor characteristics is to use high mobility materials such as germanium and III-V materials. However, transistors have to be redesigned in order to fully benefit from these alternative materials. High Mobility and Quantum Well Transistors: Design and TCAD Simulation investigates planar bulk Germanium pFET technology in chapters 2-4, focusing on both the fabrication of such a technology and on the process and electrical TCAD simulation. Furthermore, this book shows that Quantum Well based transistors can leverage the benefits of these alternative materials, since they confine the charge carriers to the high-mobility material using a heterostructure. The design and fabrication of one particular transistor structure - the SiGe Implant-Free Quantum Well pFET – is discussed. Electrical testing shows remarkable short-channel performance and prototypes are found to be competitive with a state-of-the-art planar strained-silicon technology. High mobility channels, providing high drive current, and heterostructure confinement, providing good short-channel control, make a promising combination for future technology nodes.

Indium Gallium Arsenide Three-state and Non-volatile Memory Quantum Dot Devices

Indium Gallium Arsenide Three-state and Non-volatile Memory Quantum Dot Devices PDF Author: Pik Yiu Chan
Publisher:
ISBN:
Category :
Languages : en
Pages : 216

Get Book Here

Book Description


Photo-Electroactive Non-Volatile Memories for Data Storage and Neuromorphic Computing

Photo-Electroactive Non-Volatile Memories for Data Storage and Neuromorphic Computing PDF Author: Su-Ting Han
Publisher: Woodhead Publishing
ISBN: 0128226064
Category : Technology & Engineering
Languages : en
Pages : 356

Get Book Here

Book Description
Photo-Electroactive Non-Volatile Memories for Data Storage and Neuromorphic Computing summarizes advances in the development of photo-electroactive memories and neuromorphic computing systems, suggests possible solutions to the challenges of device design, and evaluates the prospects for commercial applications. Sections covers developments in electro-photoactive memory, and photonic neuromorphic and in-memory computing, including discussions on design concepts, operation principles and basic storage mechanism of optoelectronic memory devices, potential materials from organic molecules, semiconductor quantum dots to two-dimensional materials with desirable electrical and optical properties, device challenges, and possible strategies. This comprehensive, accessible and up-to-date book will be of particular interest to graduate students and researchers in solid-state electronics. It is an invaluable systematic introduction to the memory characteristics, operation principles and storage mechanisms of the latest reported electro-photoactive memory devices. - Reviews the most promising materials to enable emerging computing memory and data storage devices, including one- and two-dimensional materials, metal oxides, semiconductors, organic materials, and more - Discusses fundamental mechanisms and design strategies for two- and three-terminal device structures - Addresses device challenges and strategies to enable translation of optical and optoelectronic technologies

Chemical Abstracts

Chemical Abstracts PDF Author:
Publisher:
ISBN:
Category : Chemistry
Languages : en
Pages : 2540

Get Book Here

Book Description