Quantitative Borehole Acoustic Methods

Quantitative Borehole Acoustic Methods PDF Author: X.M. Tang
Publisher: Elsevier
ISBN: 9780080440514
Category : Business & Economics
Languages : en
Pages : 280

Get Book Here

Book Description
Acoustic logging is a multidisciplinary technology involving basic theory, instrumentation, and data processing/interpretation methodologies. The advancement of the technology now allows for a broad range of measurements to obtain formation properties such as elastic wave velocity and attenuation, formation permeability, and seismic anisotropy that are important for petroleum reservoir exploration. With these advances, it is easier to detect and characterize formation fractures, estimate formation stress field, and locate/estimate petroleum reserves. The technology has evolved from the monopole acoustic logging into the multipole, including dipole, cross-dipole, and even quadrupole, acoustic logging measurements. The measurement process has developed from the conventional wireline logging into the logging-while-drilling stage. For such a fast developing technology with applications that are interesting to readers of different backgrounds, it is necessary to have systematic documentation of the discipline, including the theory, methods, and applications, as well as the technology's past, present, and near future development trends. Quantitative Borehole Acoustic Methods provides such documentation, with emphasis on the development over the past decade. Although considerable effort has been made to provide a thorough basis for the theory and methodology development, emphasis is placed on the applications of the developed methods. The applications are illustrated with field data examples. Many of the acoustic waveform analysis/processing methods described in the book are now widely used in the well logging industry.

Quantitative Borehole Acoustic Methods

Quantitative Borehole Acoustic Methods PDF Author: X.M. Tang
Publisher: Elsevier
ISBN: 9780080440514
Category : Business & Economics
Languages : en
Pages : 280

Get Book Here

Book Description
Acoustic logging is a multidisciplinary technology involving basic theory, instrumentation, and data processing/interpretation methodologies. The advancement of the technology now allows for a broad range of measurements to obtain formation properties such as elastic wave velocity and attenuation, formation permeability, and seismic anisotropy that are important for petroleum reservoir exploration. With these advances, it is easier to detect and characterize formation fractures, estimate formation stress field, and locate/estimate petroleum reserves. The technology has evolved from the monopole acoustic logging into the multipole, including dipole, cross-dipole, and even quadrupole, acoustic logging measurements. The measurement process has developed from the conventional wireline logging into the logging-while-drilling stage. For such a fast developing technology with applications that are interesting to readers of different backgrounds, it is necessary to have systematic documentation of the discipline, including the theory, methods, and applications, as well as the technology's past, present, and near future development trends. Quantitative Borehole Acoustic Methods provides such documentation, with emphasis on the development over the past decade. Although considerable effort has been made to provide a thorough basis for the theory and methodology development, emphasis is placed on the applications of the developed methods. The applications are illustrated with field data examples. Many of the acoustic waveform analysis/processing methods described in the book are now widely used in the well logging industry.

Acoustic Waves in Boreholes

Acoustic Waves in Boreholes PDF Author: Frederick L. Paillet
Publisher: CRC Press
ISBN: 9780849388903
Category : Science
Languages : en
Pages : 284

Get Book Here

Book Description
Introducing the first, self-contained reference on acoustic waveform logging Acoustic measurements in boreholes were first made as a specialized logging technique in geological exploration, but recent advances have greatly expanded the potential applications of this technique. Acoustic Waves in Boreholes provides a thorough review of the theory and interpretation techniques needed to realize these applications, emphasizing the role of guided modes and critically refracted waves in determining the characteristics of recorded waveforms. Topics covered in this comprehensive volume include the seismic properties of rocks; propagation of axisymmetric waves along fluid-filled boreholes in isotropic rocks; and symmetric and nonsymmetric sources in isotropic, transversely isotropic, and porous, permeable formations in open and cased boreholes. Each chapter includes the theory of synthetic microseismogram computation, interpretation and data inversion techniques illustrated using computed seismograms, and case histories using experimental data. Appendices providing the mathematical formulation needed to compute microseismograms, with a single consistent notation used throughout, are also included in appropriate chapters. The wide range of geomechanical properties covered in this book will interest exploration geophysicists, reservoir engineers, civil engineers, geologists, and soil scientists.

Acoustic Waves in Boreholes

Acoustic Waves in Boreholes PDF Author: Frederick L. Paillet
Publisher: CRC Press
ISBN: 1000943305
Category : Science
Languages : en
Pages : 282

Get Book Here

Book Description
Introducing the first, self-contained reference on acoustic waveform logging Acoustic measurements in boreholes were first made as a specialized logging technique in geological exploration, but recent advances have greatly expanded the potential applications of this technique. Acoustic Waves in Boreholes provides a thorough review of the theory and interpretation techniques needed to realize these applications, emphasizing the role of guided modes and critically refracted waves in determining the characteristics of recorded waveforms. Topics covered in this comprehensive volume include the seismic properties of rocks; propagation of axisymmetric waves along fluid-filled boreholes in isotropic rocks; and symmetric and nonsymmetric sources in isotropic, transversely isotropic, and porous, permeable formations in open and cased boreholes. Each chapter includes the theory of synthetic microseismogram computation, interpretation and data inversion techniques illustrated using computed seismograms, and case histories using experimental data. Appendices providing the mathematical formulation needed to compute microseismograms, with a single consistent notation used throughout, are also included in appropriate chapters. The wide range of geomechanical properties covered in this book will interest exploration geophysicists, reservoir engineers, civil engineers, geologists, and soil scientists.

Modeling of Resistivity and Acoustic Borehole Logging Measurements Using Finite Element Methods

Modeling of Resistivity and Acoustic Borehole Logging Measurements Using Finite Element Methods PDF Author: David Pardo
Publisher: Elsevier
ISBN: 0128214651
Category : Science
Languages : en
Pages : 314

Get Book Here

Book Description
Modeling of Resistivity and Acoustic Borehole Logging Measurements Using Finite Element Methods provides a comprehensive review of different resistivity and sonic logging instruments used within the oil industry, along with precise and solid mathematical descriptions of the physical equations and corresponding FE formulations that govern these measurements. Additionally, the book emphasizes the main modeling considerations that one needs to incorporate into the simulations in order to obtain reliable and accurate results. Essentially, the formulations and methods described here can also be applied to simulate on-surface geophysical measurements such as seismic or marine controlled-source electromagnetic (CSEM) measurements. Simulation results obtained using FE methods are superior. FE methods employ a mathematical terminology based on FE spaces that facilitate the design of sophisticated formulations and implementations according to the specifics of each problem. This mathematical FE framework provides a highly accurate, robust, and flexible unified environment for the solution of multi-physics problems. Thus, readers will benefit from this resource by learning how to make a variety of logging simulations using a unified FE framework. Provides a complete and unified finite element approach to perform borehole sonic and electromagnetic simulations Includes the latest research in mathematical and implementation content on Finite Element simulations of borehole logging measurements Features a variety of unique simulations and numerical examples that allow the reader to easily learn the main features and limitations that appear when simulating borehole resistivity measurements

A Practical Guide to Borehole Geophysics in Environmental Investigations

A Practical Guide to Borehole Geophysics in Environmental Investigations PDF Author: W. Scott Keys
Publisher: Routledge
ISBN: 1351469665
Category : Science
Languages : en
Pages : 194

Get Book Here

Book Description
Borehole geophysics is frequently applied in hydrogeological environmental investigations where, for example, sites must be evaluated to determine the distribution of contaminants. It is a cost-effective method for obtaining information during several phases of such investigations. Written by one of world's leading experts in the field, A Practical Guide to Borehole Geophysics in Environmental Investigations explains the basic principles of the many tools and techniques used in borehole logging projects. Applications are presented in terms of broad project objectives, providing a hands-on guide to geophysical logging programs, including specific examples of how to obtain and interpret data that meet particular hydrogeologic objectives.

Quantitative Borehole Acoustic Methods

Quantitative Borehole Acoustic Methods PDF Author: X.M. Tang
Publisher: Pergamon
ISBN: 9780080440514
Category : Science
Languages : en
Pages : 274

Get Book Here

Book Description
Acoustic logging is a multidisciplinary technology involving basic theory, instrumentation, and data processing/interpretation methodologies. The advancement of the technology now allows for a broad range of measurements to obtain formation properties such as elastic wave velocity and attenuation, formation permeability, and seismic anisotropy that are important for petroleum reservoir exploration. With these advances, it is easier to detect and characterize formation fractures, estimate formation stress field, and locate/estimate petroleum reserves. The technology has evolved from the monopole acoustic logging into the multipole, including dipole, cross-dipole, and even quadrupole, acoustic logging measurements. The measurement process has developed from the conventional wireline logging into the logging-while-drilling stage. For such a fast developing technology with applications that are interesting to readers of different backgrounds, it is necessary to have systematic documentation of the discipline, including the theory, methods, and applications, as well as the technology's past, present, and near future development trends. Quantitative Borehole Acoustic Methods provides such documentation, with emphasis on the development over the past decade. Although considerable effort has been made to provide a thorough basis for the theory and methodology development, emphasis is placed on the applications of the developed methods. The applications are illustrated with field data examples. Many of the acoustic waveform analysis/processing methods described in the book are now widely used in the well logging industry.

Rapid Modeling and Inversion-based Interpretation of Borehole Acoustic Measurements Acquired in Isotropic and Vertical Transversely Isotropic Formations

Rapid Modeling and Inversion-based Interpretation of Borehole Acoustic Measurements Acquired in Isotropic and Vertical Transversely Isotropic Formations PDF Author: Elsa Maalouf
Publisher:
ISBN:
Category :
Languages : en
Pages : 336

Get Book Here

Book Description
Borehole acoustic measurements are often affected by instrument noise, motion and eccentricity, environmental conditions, and spatial averaging that can compromise the accuracy of elastic properties of rock formations calculated with conventional interpretation methods. Forward and inverse modeling can be used to improve the interpretation of acoustic logs acquired in the presence of spatially complex rock formations and adverse borehole conditions. However, forward modeling of acoustic modes often requires time-consuming numerical algorithms. The main objective of this dissertation is to develop fast-forward modeling and inversion-based interpretation procedures of borehole acoustic logs for isotropic and vertical transversely isotropic (VTI) formations. Fast-forward modeling is achieved with spatial sensitivity functions which are calculated from frequency-domain linear perturbation theory of borehole acoustic modes. Spatial sensitivity functions quantify both the dependence of measured slowness on elastic properties and the spatial averaging introduced by acoustic tools. Fast-forward modeling using spatial sensitivity functions is applied to synthetic examples that include thin layers, anisotropy, and dipping layers, and is successfully validated with numerical simulations performed with finite-difference and finite-element methods. Two inversion-based interpretation methods are then developed: (1) a physics-based inversion method to reduce noise and spatial averaging effects on acoustic logs acquired in horizontally layered formations penetrated by vertical wells, and (2) a sequential inversion method to estimate stiffness coefficients of VTI formations from multi-frequency flexural/quadrupole, Stoneley, and compressional logs. The physics-based inversion method is applied to mitigate measurement noise and spatial averaging effects of acoustic logs acquired in two hydrocarbon reservoirs. Results confirm the accuracy and reliability of the estimated layer-by-layer elastic properties compared to conventional numerical filters and are obtained in less than 14 CPU seconds for a 100 ft-depth log. In VTI formations penetrated by vertical wells, sequential inversion is applied to estimate layer-by-layer stiffness coefficients of synthetic formations from borehole acoustic logs. Results indicate that mitigating spatial averaging of frequency-dependent slowness logs prior to inversion improves the layer-by-layer estimation of slownesses by a factor of 2, and that sequential inversion yields accurate and reliable estimates of rock stiffness coefficients. Finally, in high-angle wells fast-forward modeling yields flexural slownesses measured with orthogonal dipoles with 2% relative errors and in 3 CPU minutes for a log consisting of 50 measured-depth samples, compared to 15 CPU hours when using finite-difference simulation methods. Analysis of field and synthetic examples confirms that inversion-based interpretation methods yield more accurate estimations of elastic properties than conventional sonic-log interpretation procedures. Spatial sensitivity functions constitute a fast, reliable, and efficient alternative for interpreting acoustic logs acquired in isotropic and VTI formations.

Effects of Tool Positions on Borehole Acoustic Measurements

Effects of Tool Positions on Borehole Acoustic Measurements PDF Author: Xiaojun Huang
Publisher:
ISBN:
Category :
Languages : en
Pages : 572

Get Book Here

Book Description
(Cont.) to acquire, is the most problematic in soft formations. Special attention is paid to mode excitations, with respect to frequencies, tool positions and source types, in the hope to shed some light on some highly debated questions regarding tool design and data interpretation. The stretched grid finite difference algorithm is applied. The third contribution is the development of an inversion method to estimate stress magnitudes and directions from borehole acoustic measurements. It is predicted in theory that a crossover in flexural dispersion is an indicator of stress-induced anisotropy dominating over other sources of intrinsic anisotropy. The prediction is subsequently verified in a scaled-borehole experiment. We are the first ones that observe flexural dispersion crossover in field data. Using the flexural crossover as a stress signature on the borehole acoustic data, we are able to isolate stressed zones. The maximum horizontal stress direction coincides with the polarization direction of far field fast shear. The stress magnitude is related to velocity changes in the stressed state from the zero stress or hydrostatically balanced state, through a perturbation theory developed in the late 1990's. Stress directions estimated in this dissertation are consistent with focal mechanism and borehole breakout data present in the world stress map database.

Handbook of Borehole Acoustics and Rock Physics for Reservoir Characterization

Handbook of Borehole Acoustics and Rock Physics for Reservoir Characterization PDF Author: Vimal Saxena
Publisher: Elsevier
ISBN: 012812332X
Category : Science
Languages : en
Pages : 486

Get Book Here

Book Description
The Handbook of Borehole Acoustics and Rock Physics for Reservoir Characterization combines in a single useful handbook the multidisciplinary domains of the petroleum industry, including the fundamental concepts of rock physics, acoustic logging, waveform processing, and geophysical application modeling through graphical examples derived from field data. It includes results from core studies, together with graphics that validate and support the modeling process, and explores all possible facets of acoustic applications in reservoir evaluation for hydrocarbon exploration, development, and drilling support. The Handbook of Borehole Acoustics and Rock Physics for Reservoir Characterization serves as a technical guide and research reference for oil and gas professionals, scientists, and students in the multidisciplinary field of reservoir characterization through the use of petrosonics. It overviews the fundamentals of borehole acoustics and rock physics, with a focus on reservoir evaluation applications, explores current advancements through updated research, and identifies areas of future growth. Presents theory, application, and limitations of borehole acoustics and rock physics through field examples and case studies Features "Petrosonic Workflows" for various acoustic applications and evaluations, which can be easily adapted for practical reservoir modeling and interpretation Covers the potential advantages of acoustic-based techniques and summarizes key results for easy geophysical application

Borehole Acoustics

Borehole Acoustics PDF Author: Toksoz
Publisher: Pergamon Press
ISBN: 9780080372235
Category :
Languages : en
Pages :

Get Book Here

Book Description