Quantitative Atomic Resolution Transmission Electron Microscopy for Heterogeneous Nanomaterials

Quantitative Atomic Resolution Transmission Electron Microscopy for Heterogeneous Nanomaterials PDF Author: Karel Van den Bos
Publisher:
ISBN:
Category :
Languages : en
Pages : 186

Get Book Here

Book Description

Quantitative Atomic Resolution Transmission Electron Microscopy for Heterogeneous Nanomaterials

Quantitative Atomic Resolution Transmission Electron Microscopy for Heterogeneous Nanomaterials PDF Author: Karel Van den Bos
Publisher:
ISBN:
Category :
Languages : en
Pages : 186

Get Book Here

Book Description


Quantitative Atomic-Resolution Electron Microscopy

Quantitative Atomic-Resolution Electron Microscopy PDF Author:
Publisher: Academic Press
ISBN: 0323850936
Category : Technology & Engineering
Languages : en
Pages : 296

Get Book Here

Book Description
Quantitative Atomic-Resolution Electron Microscopy, Volume 217, the latest release in the Advances in Imaging and Electron Physics series merges two long-running serials, Advances in Electronics and Electron Physics and Advances in Optical and Electron Microscopy. The series features extended articles on the physics of electron devices (especially semiconductor devices), particle optics at high and low energies, microlithography, image science, digital image processing, electromagnetic wave propagation, electron microscopy, and the computing methods. Chapters in this release include Statistical parameter estimation theory, Efficient fitting algorithm, Statistics-based atom counting , Atom column detection, Optimal experiment design for nanoparticle atom-counting from ADF STEM images, and more. Contains contributions from leading authorities on the subject matter Informs and updates on the latest developments in the field of imaging and electron physics Provides practitioners interested in microscopy, optics, image processing, mathematical morphology, electromagnetic fields, electrons and ion emission with a valuable resource

Scanning Transmission Electron Microscopy

Scanning Transmission Electron Microscopy PDF Author: Alina Bruma
Publisher: CRC Press
ISBN: 0429516169
Category : Technology & Engineering
Languages : en
Pages : 162

Get Book Here

Book Description
Scanning Transmission Electron Microscopy: Advanced Characterization Methods for Materials Science Applications The information comprised in this book is focused on discussing the latest approaches in the recording of high-fidelity quantitative annular dark-field (ADF) data. It showcases the application of machine learning in electron microscopy and the latest advancements in image processing and data interpretation for materials notoriously difficult to analyze using scanning transmission electron microscopy (STEM). It also highlights strategies to record and interpret large electron diffraction datasets for the analysis of nanostructures. This book: Discusses existing approaches for experimental design in the recording of high-fidelity quantitative ADF data Presents the most common types of scintillator-photomultiplier ADF detectors, along with their strengths and weaknesses. Proposes strategies to minimize the introduction of errors from these detectors and avenues for dealing with residual errors Discusses the practice of reliable multiframe imaging, along with the benefits and new experimental opportunities it presents in electron dose or dose-rate management Focuses on supervised and unsupervised machine learning for electron microscopy Discusses open data formats, community-driven software, and data repositories Proposes methods to process information at both global and local scales, and discusses avenues to improve the storage, transfer, analysis, and interpretation of multidimensional datasets Provides the spectrum of possibilities to study materials at the resolution limit by means of new developments in instrumentation Recommends methods for quantitative structural characterization of sensitive nanomaterials using electron diffraction techniques and describes strategies to collect electron diffraction patterns for such materials This book helps academics, researchers, and industry professionals in materials science, chemistry, physics, and related fields to understand and apply computer-science–derived analysis methods to solve problems regarding data analysis and interpretation of materials properties.

Quantitative Scanning Transmission Electron Microscopy

Quantitative Scanning Transmission Electron Microscopy PDF Author: James Michael LeBeau
Publisher:
ISBN:
Category : Scanning transmission electron microscopy
Languages : en
Pages : 0

Get Book Here

Book Description
Atomic resolution electron microscopy ranks as one of the most important characterization methods in materials science. Example applications range from investigating single defects to determining detailed interface reconstructions. In recent years, high-angle annular dark-field (HAADF) scanning transmission electron microscopy (STEM) has become the technique of choice because the image intensities are considered to be intuitively interpretable and depend sensitively upon the atomic species present. The combination of experiment with electron scattering theory would thus enable the extraction of chemical information directly from the images without the need for calibration standards. However, theoretical predictions of contrast in atomic resolution electron microscopy images have never agreed quantitatively with experiments, raising questions as to whether the current understanding of image formation in the electron microscope is adequate.

Handbook of Microscopy for Nanotechnology

Handbook of Microscopy for Nanotechnology PDF Author: Nan Yao
Publisher: Springer Science & Business Media
ISBN: 1402080069
Category : Technology & Engineering
Languages : en
Pages : 745

Get Book Here

Book Description
Nanostructured materials take on an enormously rich variety of properties and promise exciting new advances in micromechanical, electronic, and magnetic devices as well as in molecular fabrications. The structure-composition-processing-property relationships for these sub 100 nm-sized materials can only be understood by employing an array of modern microscopy and microanalysis tools. Handbook of Microscopy for Nanotechnology aims to provide an overview of the basics and applications of various microscopy techniques for nanotechnology. This handbook highlights various key microcopic techniques and their applications in this fast-growing field. Topics to be covered include the following: scanning near field optical microscopy, confocal optical microscopy, atomic force microscopy, magnetic force microscopy, scanning turning microscopy, high-resolution scanning electron microscopy, orientational imaging microscopy, high-resolution transmission electron microscopy, scanning transmission electron microscopy, environmental transmission electron microscopy, quantitative electron diffraction, Lorentz microscopy, electron holography, 3-D transmission electron microscopy, high-spatial resolution quantitative microanalysis, electron-energy-loss spectroscopy and spectral imaging, focused ion beam, secondary ion microscopy, and field ion microscopy.

Scanning Transmission Electron Microscopy Of Nanomaterials: Basics Of Imaging And Analysis

Scanning Transmission Electron Microscopy Of Nanomaterials: Basics Of Imaging And Analysis PDF Author: Nobuo Tanaka
Publisher: World Scientific
ISBN: 1783264713
Category : Science
Languages : en
Pages : 616

Get Book Here

Book Description
The basics, present status and future prospects of high-resolution scanning transmission electron microscopy (STEM) are described in the form of a textbook for advanced undergraduates and graduate students. This volume covers recent achievements in the field of STEM obtained with advanced technologies such as spherical aberration correction, monochromator, high-sensitivity electron energy loss spectroscopy and the software of image mapping. The future prospects chapter also deals with z-slice imaging and confocal STEM for 3D analysis of nanostructured materials.

Quantitative Atomic-Resolution Electron Microscopy

Quantitative Atomic-Resolution Electron Microscopy PDF Author: Martin Hÿtch
Publisher: Elsevier
ISBN: 0128246073
Category : Technology & Engineering
Languages : en
Pages : 294

Get Book Here

Book Description
Quantitative Atomic-Resolution Electron Microscopy, Volume 217, the latest release in the Advances in Imaging and Electron Physics series merges two long-running serials, Advances in Electronics and Electron Physics and Advances in Optical and Electron Microscopy. The series features extended articles on the physics of electron devices (especially semiconductor devices), particle optics at high and low energies, microlithography, image science, digital image processing, electromagnetic wave propagation, electron microscopy, and the computing methods. Chapters in this release include Statistical parameter estimation theory, Efficient fitting algorithm, Statistics-based atom counting , Atom column detection, Optimal experiment design for nanoparticle atom-counting from ADF STEM images, and more. Contains contributions from leading authorities on the subject matter Informs and updates on the latest developments in the field of imaging and electron physics Provides practitioners interested in microscopy, optics, image processing, mathematical morphology, electromagnetic fields, electrons and ion emission with a valuable resource

Quantitative Atom Detection from Atomic-resolution Transmission Electron Microscopy Images

Quantitative Atom Detection from Atomic-resolution Transmission Electron Microscopy Images PDF Author: Jarmo Fatermans
Publisher:
ISBN:
Category :
Languages : en
Pages : 155

Get Book Here

Book Description


Field Emission Scanning Electron Microscopy

Field Emission Scanning Electron Microscopy PDF Author: Nicolas Brodusch
Publisher: Springer
ISBN: 9811044333
Category : Technology & Engineering
Languages : en
Pages : 143

Get Book Here

Book Description
This book highlights what is now achievable in terms of materials characterization with the new generation of cold-field emission scanning electron microscopes applied to real materials at high spatial resolution. It discusses advanced scanning electron microscopes/scanning- transmission electron microscopes (SEM/STEM), simulation and post-processing techniques at high spatial resolution in the fields of nanomaterials, metallurgy, geology, and more. These microscopes now offer improved performance at very low landing voltage and high -beam probe current stability, combined with a routine transmission mode capability that can compete with the (scanning-) transmission electron microscopes (STEM/-TEM) historically run at higher beam accelerating voltage

Direct Measurement of Thicknesses, Volumes Or Compositions of Nanomaterials by Quantitative Atomic Number Contrast in High-angle Annular Dark-field Scanning Transmission Electron Microscopy

Direct Measurement of Thicknesses, Volumes Or Compositions of Nanomaterials by Quantitative Atomic Number Contrast in High-angle Annular Dark-field Scanning Transmission Electron Microscopy PDF Author: Biao Yuan
Publisher:
ISBN:
Category :
Languages : en
Pages : 130

Get Book Here

Book Description
The sizes, shapes, volumes and compositions of nanoparticles are very important parameters determining many of their properties. Efforts to measure these parameters for individual nanoparticles and to obtain reliable statistics for a large number of nanoparticles require a fast and reliable method for 3-D characterization. In this dissertation, a direct measurement method for thicknesses, volumes or compositions of nanomaterials by quantitative atomic number contrast in High-Angle Annular Dark-Field (HAADF) Scanning Transmission Electron Microscopy (STEM) is presented. A HAADF detector collects electrons scattered incoherently to high angles. The HAADF signal intensity is in first-order approximation proportional to the sample thickness and increases with atomic number. However, for larger sample thicknesses this approach fails. A simple description for the thickness dependence of the HAADF-STEM contrast has been developed in this dissertation. A new method for the calibration of the sensitivity of the HAADF detector for a FEI F30 transmission electron microscope (TEM) is developed in this dissertation. A nearly linear relationship of the HAADF signal with the electron current is confirmed. Cross sections of multilayered samples provided by TriQuint Semiconductors in Apopka, FL, for contrast calibration were obtained by focused ion-beam (FIB) preparation yielding data on the interaction cross section per atom. To obtain an absolute intensity calibration of the HAADF-STEM intensity, Convergent Beam Electron Diffraction (CBED) was performed on Si single crystals. However, for samples prepared by the focused ion beam technique, CBED often significantly underestimates the sample thickness. Multislice simulations from Dr. Kirkland's C codes are used for comparison with experimental results. TEM offers high lateral resolution, but contains little or no information on the thickness of samples. Thickness maps in energy-filtered TEM (EFTEM), CBED and tilt series are so far the only methods to determine thicknesses of particles in TEM. In this work I have introduced the use of wedge-shaped multilayer samples prepared by FIB for the calibration of HAADF-STEM contrasts. This method yields quantitative contrast data as a function of sample thickness. A database with several pure elements and compounds has been compiled, containing experimental data on the fraction of electrons scattered onto the HAADF detector for each nanometer of sample thickness. The use of thick samples reveals an increased signal at the interfaces of high- and low-density materials. This effect can be explained by the transfer of scattered electrons from the high density material across the interface into the less-absorbing low-density material. The calibrations were used to determine concentration gradients in nanoscale Fe-Pt multilayers as well as thicknesses and volumes of individual Au-Fe, Pt, and Ag nanoparticles. Volumes of nanoparticles with known composition can be determined with accuracy better than 15%. Porosity determination of materials becomes available with this method as shown in an example of porous Silicon.