Author: V.P. Krainov
Publisher: Springer Science & Business Media
ISBN: 9780883189535
Category : Science
Languages : en
Pages : 226
Book Description
Market: Graduate students and researchers in physical kinetics, hydrodynamics, and plasma and solid state physics. Vladimir Krainov has produced one of the few books in the field to concentrate on qualitative methods. He presents order of magnitude solutions for physical quantities in various nonequilibrium statistical processes as well as qualitative solutions of differential equations for macroscopic nonequilibrium processes in gases and other media. Covers topics including free convection, turbulence phenomena, sound propagation, and surface phenomena.
Qualitative Methods of Physical Kinetics and Hydrodynamics
Author: V.P. Krainov
Publisher: Springer Science & Business Media
ISBN: 9780883189535
Category : Science
Languages : en
Pages : 226
Book Description
Market: Graduate students and researchers in physical kinetics, hydrodynamics, and plasma and solid state physics. Vladimir Krainov has produced one of the few books in the field to concentrate on qualitative methods. He presents order of magnitude solutions for physical quantities in various nonequilibrium statistical processes as well as qualitative solutions of differential equations for macroscopic nonequilibrium processes in gases and other media. Covers topics including free convection, turbulence phenomena, sound propagation, and surface phenomena.
Publisher: Springer Science & Business Media
ISBN: 9780883189535
Category : Science
Languages : en
Pages : 226
Book Description
Market: Graduate students and researchers in physical kinetics, hydrodynamics, and plasma and solid state physics. Vladimir Krainov has produced one of the few books in the field to concentrate on qualitative methods. He presents order of magnitude solutions for physical quantities in various nonequilibrium statistical processes as well as qualitative solutions of differential equations for macroscopic nonequilibrium processes in gases and other media. Covers topics including free convection, turbulence phenomena, sound propagation, and surface phenomena.
Proceedings of the IV Advanced Ceramics and Applications Conference
Author: Bill Lee
Publisher: Springer
ISBN: 9462392137
Category : Technology & Engineering
Languages : en
Pages : 526
Book Description
This is the Proceedings of III Advanced Ceramics and Applications conference, held in Belgrade, Serbia in 2014. It contains 25 papers on various subjects regarding preparation, characterization and application of advanced ceramic materials.
Publisher: Springer
ISBN: 9462392137
Category : Technology & Engineering
Languages : en
Pages : 526
Book Description
This is the Proceedings of III Advanced Ceramics and Applications conference, held in Belgrade, Serbia in 2014. It contains 25 papers on various subjects regarding preparation, characterization and application of advanced ceramic materials.
Global Energetics of the Atmosphere
Author: Boris M. Smirnov
Publisher: Springer Nature
ISBN: 3030900088
Category : Science
Languages : en
Pages : 319
Book Description
This book looks at global atmospheric processes from a physical standpoint using available current and past observational data taken from measurements of relevant atmospheric parameters. It describes various aspects of the current atmospheric state and its future evolution, focusing primarily on the energetic balance of the Earth and atmosphere, and taking into consideration the multi-faceted global equilibrium between these two systems, carbon, and water. The analysis presented in this book restricts itself to those objects and processes that allow us to obtain reliable conclusions and numerical estimations, in contrast to current climate models with much larger numbers of parameters for describing the same problems. As a result, in spite of the roughness of numerical parameters, the book unveils a reliable and transparent physical picture of energetic phenomena in the global atmosphere. In particular, it shows that approximately only one-fourth of atmospheric water returns from the atmosphere to the Earth in the form of free molecules. It was shown that the contemporary warming of our planet has an anthropogenic character, and that the average global temperature increases due to an increase of the concentration of atmospheric CO2 molecules, via an increase in atmospheric moisture, as well as an increase in the amount of aerosols in the atmosphere. Accumulation of atmospheric carbon dioxide plays a subsidiary role in this process and gives approximately one-third in a change of the global temperature, while an increase in the amount of atmospheric water by as little as only 0.3% per year explains the observed warming of the Earth. The book shows how the greenhouse instability of the atmosphere evidently has its origins in the Eocene epoch, presenting an analysis of the influence of various types of global energetic processes on the climate that differs from the official stance on these problems.
Publisher: Springer Nature
ISBN: 3030900088
Category : Science
Languages : en
Pages : 319
Book Description
This book looks at global atmospheric processes from a physical standpoint using available current and past observational data taken from measurements of relevant atmospheric parameters. It describes various aspects of the current atmospheric state and its future evolution, focusing primarily on the energetic balance of the Earth and atmosphere, and taking into consideration the multi-faceted global equilibrium between these two systems, carbon, and water. The analysis presented in this book restricts itself to those objects and processes that allow us to obtain reliable conclusions and numerical estimations, in contrast to current climate models with much larger numbers of parameters for describing the same problems. As a result, in spite of the roughness of numerical parameters, the book unveils a reliable and transparent physical picture of energetic phenomena in the global atmosphere. In particular, it shows that approximately only one-fourth of atmospheric water returns from the atmosphere to the Earth in the form of free molecules. It was shown that the contemporary warming of our planet has an anthropogenic character, and that the average global temperature increases due to an increase of the concentration of atmospheric CO2 molecules, via an increase in atmospheric moisture, as well as an increase in the amount of aerosols in the atmosphere. Accumulation of atmospheric carbon dioxide plays a subsidiary role in this process and gives approximately one-third in a change of the global temperature, while an increase in the amount of atmospheric water by as little as only 0.3% per year explains the observed warming of the Earth. The book shows how the greenhouse instability of the atmosphere evidently has its origins in the Eocene epoch, presenting an analysis of the influence of various types of global energetic processes on the climate that differs from the official stance on these problems.
Microphysics of Atmospheric Phenomena
Author: Boris M. Smirnov
Publisher: Springer
ISBN: 3319308130
Category : Science
Languages : en
Pages : 269
Book Description
This book investigates elementary processes in the Earth’s atmosphere involving photons, electrons, ions, radicals, and aerosols. It is based on global atmospheric models such as the standard atmospheric model with averaged atmospheric parameters across the globe and over time, the Earth’s energetic balance, and the global electric circuit that allows to analyze fundamental atmospheric properties to be analyzed. Rate constants of elementary processes in the Earth’s atmosphere, together with measured atmospheric parameters and existing concepts of atmospheric phenomena, are used in the analysis of global and local atmospheric processes. Atmospheric photoprocesses result from the interaction of solar radiation with the atmosphere and processes involving ions, oxygen atoms, excited atomic particles and ozone molecules. Atmospheric electricity as a secondary phenomenon to atmospheric water circulation results in a chain of processes that begins with collisions of water aerosols in different aggregate states. Cosmic rays are of importance for atmospheric electricity, as they create positive and negative ions in the air. Air breakdown in an electric field of clouds in the form of lightning may develop under the influence of cosmic ray-created seed electrons, which are necessary for electron multiplication in ionization wave-streamers. The upper atmosphere (ionosphere) is formed under solar radiation in a vacuum ultraviolet spectrum, and absorption of this radiation leads to air photoionization. The greenhouse effect is determined by atmospheric water, whereas transitions between a water vapor and aerosols may lead to a change in atmospheric optical depth. Carbon dioxide contributes in small portions to the atmospheric greenhouse effect. Cosmic rays are of importance for atmospheric discharge, the origin of lightning and cloud formation in the first stage of aerosol growth. This book provides a qualitative description of atmospheric properties and phenomena based on elementary processes and simple models.
Publisher: Springer
ISBN: 3319308130
Category : Science
Languages : en
Pages : 269
Book Description
This book investigates elementary processes in the Earth’s atmosphere involving photons, electrons, ions, radicals, and aerosols. It is based on global atmospheric models such as the standard atmospheric model with averaged atmospheric parameters across the globe and over time, the Earth’s energetic balance, and the global electric circuit that allows to analyze fundamental atmospheric properties to be analyzed. Rate constants of elementary processes in the Earth’s atmosphere, together with measured atmospheric parameters and existing concepts of atmospheric phenomena, are used in the analysis of global and local atmospheric processes. Atmospheric photoprocesses result from the interaction of solar radiation with the atmosphere and processes involving ions, oxygen atoms, excited atomic particles and ozone molecules. Atmospheric electricity as a secondary phenomenon to atmospheric water circulation results in a chain of processes that begins with collisions of water aerosols in different aggregate states. Cosmic rays are of importance for atmospheric electricity, as they create positive and negative ions in the air. Air breakdown in an electric field of clouds in the form of lightning may develop under the influence of cosmic ray-created seed electrons, which are necessary for electron multiplication in ionization wave-streamers. The upper atmosphere (ionosphere) is formed under solar radiation in a vacuum ultraviolet spectrum, and absorption of this radiation leads to air photoionization. The greenhouse effect is determined by atmospheric water, whereas transitions between a water vapor and aerosols may lead to a change in atmospheric optical depth. Carbon dioxide contributes in small portions to the atmospheric greenhouse effect. Cosmic rays are of importance for atmospheric discharge, the origin of lightning and cloud formation in the first stage of aerosol growth. This book provides a qualitative description of atmospheric properties and phenomena based on elementary processes and simple models.
Transport of Infrared Atmospheric Radiation
Author: Boris M. Smirnov
Publisher: Walter de Gruyter GmbH & Co KG
ISBN: 3110628759
Category : Science
Languages : en
Pages : 264
Book Description
This book sets out to give a rigorous mathematical description of the greenhouse effect through the theory of infrared atmospheric emission. In contrast to traditional climatological analysis, this approach eschews empirical relations in favour of a strict thermodynamical derivation, based on data from NASA and from the HITRAN spectroscopy database. The results highlight new aspects of the role of clouds in the greenhouse effect.
Publisher: Walter de Gruyter GmbH & Co KG
ISBN: 3110628759
Category : Science
Languages : en
Pages : 264
Book Description
This book sets out to give a rigorous mathematical description of the greenhouse effect through the theory of infrared atmospheric emission. In contrast to traditional climatological analysis, this approach eschews empirical relations in favour of a strict thermodynamical derivation, based on data from NASA and from the HITRAN spectroscopy database. The results highlight new aspects of the role of clouds in the greenhouse effect.
Aslib Book Guide
Author:
Publisher:
ISBN:
Category : Best books
Languages : en
Pages : 488
Book Description
Publisher:
ISBN:
Category : Best books
Languages : en
Pages : 488
Book Description
Bubble Systems
Author: Alexander A. Avdeev
Publisher: Springer
ISBN: 3319292889
Category : Technology & Engineering
Languages : en
Pages : 481
Book Description
This monograph presents a systematic analysis of bubble system mathematics, using the mechanics of two-phase systems in non-equilibrium as the scope of analysis. The author introduces the thermodynamic foundations of bubble systems, ranging from the fundamental starting points to current research challenges. This book addresses a range of topics, including description methods of multi-phase systems, boundary and initial conditions as well as coupling requirements at the phase boundary. Moreover, it presents a detailed study of the basic problems of bubble dynamics in a liquid mass: growth (dynamically and thermally controlled), collapse, bubble pulsations, bubble rise and breakup. Special emphasis is placed on bubble dynamics in turbulent flows. The analysis results are used to write integral equations governing the rate of vapor generation (condensation) in non-equilibrium flows, thus creating a basis for solving a number of practical problems. This book is the first to present a comprehensive theory of boiling shock with applications to problems of critical discharge and flashing under the fast decompression conditions. Reynolds’ analogy was the key to solving a number of problems in subcooled forced-flow boiling, the theoretical results of which led to easy-to-use design formulas. This book is primarily aimed at graduate and post-graduate students specializing in hydrodynamics or heat and mass transfer, as well as research expert focused on two-phase flow. It will also serve as a comprehensive reference book for designers working in the field of power and aerospace technology.
Publisher: Springer
ISBN: 3319292889
Category : Technology & Engineering
Languages : en
Pages : 481
Book Description
This monograph presents a systematic analysis of bubble system mathematics, using the mechanics of two-phase systems in non-equilibrium as the scope of analysis. The author introduces the thermodynamic foundations of bubble systems, ranging from the fundamental starting points to current research challenges. This book addresses a range of topics, including description methods of multi-phase systems, boundary and initial conditions as well as coupling requirements at the phase boundary. Moreover, it presents a detailed study of the basic problems of bubble dynamics in a liquid mass: growth (dynamically and thermally controlled), collapse, bubble pulsations, bubble rise and breakup. Special emphasis is placed on bubble dynamics in turbulent flows. The analysis results are used to write integral equations governing the rate of vapor generation (condensation) in non-equilibrium flows, thus creating a basis for solving a number of practical problems. This book is the first to present a comprehensive theory of boiling shock with applications to problems of critical discharge and flashing under the fast decompression conditions. Reynolds’ analogy was the key to solving a number of problems in subcooled forced-flow boiling, the theoretical results of which led to easy-to-use design formulas. This book is primarily aimed at graduate and post-graduate students specializing in hydrodynamics or heat and mass transfer, as well as research expert focused on two-phase flow. It will also serve as a comprehensive reference book for designers working in the field of power and aerospace technology.
41st AIAA Aerospace Sciences Meeting & Exhibit
Author:
Publisher:
ISBN:
Category : Aeronautics
Languages : en
Pages : 648
Book Description
Publisher:
ISBN:
Category : Aeronautics
Languages : en
Pages : 648
Book Description
New Technical Books
Author: New York Public Library
Publisher:
ISBN:
Category : Engineering
Languages : en
Pages : 322
Book Description
Publisher:
ISBN:
Category : Engineering
Languages : en
Pages : 322
Book Description
Theory of Gas Discharge Plasma
Author: Boris M. Smirnov
Publisher: Springer
ISBN: 3319110659
Category : Science
Languages : en
Pages : 424
Book Description
This book presents the theory of gas discharge plasmas in a didactical way. It explains the processes in gas discharge plasmas. A gas discharge plasma is an ionized gas which is supported by an external electric field. Therefore its parameters are determined by processes in it. The properties of a gas discharge plasma depend on its gas component, types of external fields, their geometry and regimes of gas discharge. Fundamentals of a gas discharge plasma include elementary, radiative and transport processes which are included in its kinetics influence. They are represented in this book together with the analysis of simple gas discharges. These general principles are applied to stationary gas discharge plasmas of helium and argon. The analysis of such plasmas under certain conditions is theoretically determined by numerical plasma parameters for given regimes and conditions.
Publisher: Springer
ISBN: 3319110659
Category : Science
Languages : en
Pages : 424
Book Description
This book presents the theory of gas discharge plasmas in a didactical way. It explains the processes in gas discharge plasmas. A gas discharge plasma is an ionized gas which is supported by an external electric field. Therefore its parameters are determined by processes in it. The properties of a gas discharge plasma depend on its gas component, types of external fields, their geometry and regimes of gas discharge. Fundamentals of a gas discharge plasma include elementary, radiative and transport processes which are included in its kinetics influence. They are represented in this book together with the analysis of simple gas discharges. These general principles are applied to stationary gas discharge plasmas of helium and argon. The analysis of such plasmas under certain conditions is theoretically determined by numerical plasma parameters for given regimes and conditions.