Author: Alexander J. Hahn
Publisher: Springer Science & Business Media
ISBN: 146846311X
Category : Mathematics
Languages : en
Pages : 296
Book Description
Quadratic Algebras, Clifford Algebras, and Arithmetic Forms introduces mathematicians to the large and dynamic area of algebras and forms over commutative rings. The book begins very elementary and progresses gradually in its degree of difficulty. Topics include the connection between quadratic algebras, Clifford algebras and quadratic forms, Brauer groups, the matrix theory of Clifford algebras over fields, Witt groups of quadratic and symmetric bilinear forms. Some of the new results included by the author concern the representation of Clifford algebras, the structure of Arf algebra in the free case, connections between the group of isomorphic classes of finitely generated projectives of rank one and arithmetic results about the quadratic Witt group.
Quadratic Algebras, Clifford Algebras, and Arithmetic Witt Groups
Author: Alexander J. Hahn
Publisher: Springer Science & Business Media
ISBN: 146846311X
Category : Mathematics
Languages : en
Pages : 296
Book Description
Quadratic Algebras, Clifford Algebras, and Arithmetic Forms introduces mathematicians to the large and dynamic area of algebras and forms over commutative rings. The book begins very elementary and progresses gradually in its degree of difficulty. Topics include the connection between quadratic algebras, Clifford algebras and quadratic forms, Brauer groups, the matrix theory of Clifford algebras over fields, Witt groups of quadratic and symmetric bilinear forms. Some of the new results included by the author concern the representation of Clifford algebras, the structure of Arf algebra in the free case, connections between the group of isomorphic classes of finitely generated projectives of rank one and arithmetic results about the quadratic Witt group.
Publisher: Springer Science & Business Media
ISBN: 146846311X
Category : Mathematics
Languages : en
Pages : 296
Book Description
Quadratic Algebras, Clifford Algebras, and Arithmetic Forms introduces mathematicians to the large and dynamic area of algebras and forms over commutative rings. The book begins very elementary and progresses gradually in its degree of difficulty. Topics include the connection between quadratic algebras, Clifford algebras and quadratic forms, Brauer groups, the matrix theory of Clifford algebras over fields, Witt groups of quadratic and symmetric bilinear forms. Some of the new results included by the author concern the representation of Clifford algebras, the structure of Arf algebra in the free case, connections between the group of isomorphic classes of finitely generated projectives of rank one and arithmetic results about the quadratic Witt group.
Quadratic Algebras, Clifford Algebras, and Arithmetic Witt Groups
Author: Alexander J Hahn
Publisher:
ISBN: 9781468463125
Category :
Languages : en
Pages : 300
Book Description
Publisher:
ISBN: 9781468463125
Category :
Languages : en
Pages : 300
Book Description
Clifford Algebras and their Applications in Mathematical Physics
Author: Rafal Ablamowicz
Publisher: Springer Science & Business Media
ISBN: 1461213681
Category : Mathematics
Languages : en
Pages : 470
Book Description
The plausible relativistic physical variables describing a spinning, charged and massive particle are, besides the charge itself, its Minkowski (four) po sition X, its relativistic linear (four) momentum P and also its so-called Lorentz (four) angular momentum E # 0, the latter forming four trans lation invariant part of its total angular (four) momentum M. Expressing these variables in terms of Poincare covariant real valued functions defined on an extended relativistic phase space [2, 7J means that the mutual Pois son bracket relations among the total angular momentum functions Mab and the linear momentum functions pa have to represent the commutation relations of the Poincare algebra. On any such an extended relativistic phase space, as shown by Zakrzewski [2, 7], the (natural?) Poisson bracket relations (1. 1) imply that for the splitting of the total angular momentum into its orbital and its spin part (1. 2) one necessarily obtains (1. 3) On the other hand it is always possible to shift (translate) the commuting (see (1. 1)) four position xa by a four vector ~Xa (1. 4) so that the total angular four momentum splits instead into a new orbital and a new (Pauli-Lubanski) spin part (1. 5) in such a way that (1. 6) However, as proved by Zakrzewski [2, 7J, the so-defined new shifted four a position functions X must fulfill the following Poisson bracket relations: (1.
Publisher: Springer Science & Business Media
ISBN: 1461213681
Category : Mathematics
Languages : en
Pages : 470
Book Description
The plausible relativistic physical variables describing a spinning, charged and massive particle are, besides the charge itself, its Minkowski (four) po sition X, its relativistic linear (four) momentum P and also its so-called Lorentz (four) angular momentum E # 0, the latter forming four trans lation invariant part of its total angular (four) momentum M. Expressing these variables in terms of Poincare covariant real valued functions defined on an extended relativistic phase space [2, 7J means that the mutual Pois son bracket relations among the total angular momentum functions Mab and the linear momentum functions pa have to represent the commutation relations of the Poincare algebra. On any such an extended relativistic phase space, as shown by Zakrzewski [2, 7], the (natural?) Poisson bracket relations (1. 1) imply that for the splitting of the total angular momentum into its orbital and its spin part (1. 2) one necessarily obtains (1. 3) On the other hand it is always possible to shift (translate) the commuting (see (1. 1)) four position xa by a four vector ~Xa (1. 4) so that the total angular four momentum splits instead into a new orbital and a new (Pauli-Lubanski) spin part (1. 5) in such a way that (1. 6) However, as proved by Zakrzewski [2, 7J, the so-defined new shifted four a position functions X must fulfill the following Poisson bracket relations: (1.
Arithmetic and Analytic Theories of Quadratic Forms and Clifford Groups
Author: Goro Shimura
Publisher: American Mathematical Soc.
ISBN: 1470415623
Category : Education
Languages : en
Pages : 290
Book Description
In this book, award-winning author Goro Shimura treats new areas and presents relevant expository material in a clear and readable style. Topics include Witt's theorem and the Hasse principle on quadratic forms, algebraic theory of Clifford algebras, spin groups, and spin representations. He also includes some basic results not readily found elsewhere. The two principle themes are: (1) Quadratic Diophantine equations; (2) Euler products and Eisenstein series on orthogonal groups and Clifford groups. The starting point of the first theme is the result of Gauss that the number of primitive representations of an integer as the sum of three squares is essentially the class number of primitive binary quadratic forms. Presented are a generalization of this fact for arbitrary quadratic forms over algebraic number fields and various applications. For the second theme, the author proves the existence of the meromorphic continuation of a Euler product associated with a Hecke eigenform on a Clifford or an orthogonal group. The same is done for an Eisenstein series on such a group. Beyond familiarity with algebraic number theory, the book is mostly self-contained. Several standard facts are stated with references for detailed proofs. Goro Shimura won the 1996 Steele Prize for Lifetime Achievement for "his important and extensive work on arithmetical geometry and automorphic forms".
Publisher: American Mathematical Soc.
ISBN: 1470415623
Category : Education
Languages : en
Pages : 290
Book Description
In this book, award-winning author Goro Shimura treats new areas and presents relevant expository material in a clear and readable style. Topics include Witt's theorem and the Hasse principle on quadratic forms, algebraic theory of Clifford algebras, spin groups, and spin representations. He also includes some basic results not readily found elsewhere. The two principle themes are: (1) Quadratic Diophantine equations; (2) Euler products and Eisenstein series on orthogonal groups and Clifford groups. The starting point of the first theme is the result of Gauss that the number of primitive representations of an integer as the sum of three squares is essentially the class number of primitive binary quadratic forms. Presented are a generalization of this fact for arbitrary quadratic forms over algebraic number fields and various applications. For the second theme, the author proves the existence of the meromorphic continuation of a Euler product associated with a Hecke eigenform on a Clifford or an orthogonal group. The same is done for an Eisenstein series on such a group. Beyond familiarity with algebraic number theory, the book is mostly self-contained. Several standard facts are stated with references for detailed proofs. Goro Shimura won the 1996 Steele Prize for Lifetime Achievement for "his important and extensive work on arithmetical geometry and automorphic forms".
Advanced Modern Algebra
Author: Joseph J. Rotman
Publisher: American Mathematical Soc.
ISBN: 1470415542
Category : Mathematics
Languages : en
Pages : 722
Book Description
This new edition, now in two parts, has been significantly reorganized and many sections have been rewritten. This first part, designed for a first year of graduate algebra, consists of two courses: Galois theory and Module theory. Topics covered in the first course are classical formulas for solutions of cubic and quartic equations, classical number theory, commutative algebra, groups, and Galois theory. Topics in the second course are Zorn's lemma, canonical forms, inner product spaces, categories and limits, tensor products, projective, injective, and flat modules, multilinear algebra, affine varieties, and Gröbner bases.
Publisher: American Mathematical Soc.
ISBN: 1470415542
Category : Mathematics
Languages : en
Pages : 722
Book Description
This new edition, now in two parts, has been significantly reorganized and many sections have been rewritten. This first part, designed for a first year of graduate algebra, consists of two courses: Galois theory and Module theory. Topics covered in the first course are classical formulas for solutions of cubic and quartic equations, classical number theory, commutative algebra, groups, and Galois theory. Topics in the second course are Zorn's lemma, canonical forms, inner product spaces, categories and limits, tensor products, projective, injective, and flat modules, multilinear algebra, affine varieties, and Gröbner bases.
Quadratic Algebras, Clifford Algebras, and Arithmetic Witt Groups
Author: Alexander Hahn
Publisher:
ISBN:
Category : Clifford algebras
Languages : en
Pages : 308
Book Description
Publisher:
ISBN:
Category : Clifford algebras
Languages : en
Pages : 308
Book Description
The Special Theory of Relativity
Author: Anadijiban Das
Publisher: Springer Science & Business Media
ISBN: 1461208939
Category : Science
Languages : en
Pages : 226
Book Description
Based on courses taught at the University of Dublin, Carnegie Mellon University, and mostly at Simon Fraser University, this book presents the special theory of relativity from a mathematical point of view. It begins with the axioms of the Minkowski vector space and the flat spacetime manifold. Then it discusses the kinematics of special relativity in terms of Lorentz tranformations, and treats the group structure of Lorentz transformations. Extending the discussion to spinors, the author shows how a unimodular mapping of spinor (vector) space can induce a proper, orthochronous Lorentz mapping on the Minkowski vector space. The second part begins with a discussion of relativistic particle mechanics from both the Lagrangian and Hamiltonian points of view. The book then turns to the relativistic (classical) field theory, including a proof of Noether's theorem and discussions of the Klein-Gordon, electromagnetic, Dirac, and non-abelian gauge fields. The final chapter deals with recent work on classical fields in an eight-dimensional covariant phase space.
Publisher: Springer Science & Business Media
ISBN: 1461208939
Category : Science
Languages : en
Pages : 226
Book Description
Based on courses taught at the University of Dublin, Carnegie Mellon University, and mostly at Simon Fraser University, this book presents the special theory of relativity from a mathematical point of view. It begins with the axioms of the Minkowski vector space and the flat spacetime manifold. Then it discusses the kinematics of special relativity in terms of Lorentz tranformations, and treats the group structure of Lorentz transformations. Extending the discussion to spinors, the author shows how a unimodular mapping of spinor (vector) space can induce a proper, orthochronous Lorentz mapping on the Minkowski vector space. The second part begins with a discussion of relativistic particle mechanics from both the Lagrangian and Hamiltonian points of view. The book then turns to the relativistic (classical) field theory, including a proof of Noether's theorem and discussions of the Klein-Gordon, electromagnetic, Dirac, and non-abelian gauge fields. The final chapter deals with recent work on classical fields in an eight-dimensional covariant phase space.
Entire and Meromorphic Functions
Author: Lee A. Rubel
Publisher: Springer Science & Business Media
ISBN: 1461207355
Category : Mathematics
Languages : en
Pages : 196
Book Description
Mathematics is a beautiful subject, and entire functions is its most beautiful branch. Every aspect of mathematics enters into it, from analysis, algebra, and geometry all the way to differential equations and logic. For example, my favorite theorem in all of mathematics is a theorem of R. NevanJinna that two functions, meromorphic in the whole complex plane, that share five values must be identical. For real functions, there is nothing that even remotely corresponds to this. This book is an introduction to the theory of entire and meromorphic functions, with a heavy emphasis on Nevanlinna theory, otherwise known as value-distribution theory. Things included here that occur in no other book (that we are aware of) are the Fourier series method for entire and mero morphic functions, a study of integer valued entire functions, the Malliavin Rubel extension of Carlson's Theorem (the "sampling theorem"), and the first-order theory of the ring of all entire functions, and a final chapter on Tarski's "High School Algebra Problem," a topic from mathematical logic that connects with entire functions. This book grew out of a set of classroom notes for a course given at the University of Illinois in 1963, but they have been much changed, corrected, expanded, and updated, partially for a similar course at the same place in 1993. My thanks to the many students who prepared notes and have given corrections and comments.
Publisher: Springer Science & Business Media
ISBN: 1461207355
Category : Mathematics
Languages : en
Pages : 196
Book Description
Mathematics is a beautiful subject, and entire functions is its most beautiful branch. Every aspect of mathematics enters into it, from analysis, algebra, and geometry all the way to differential equations and logic. For example, my favorite theorem in all of mathematics is a theorem of R. NevanJinna that two functions, meromorphic in the whole complex plane, that share five values must be identical. For real functions, there is nothing that even remotely corresponds to this. This book is an introduction to the theory of entire and meromorphic functions, with a heavy emphasis on Nevanlinna theory, otherwise known as value-distribution theory. Things included here that occur in no other book (that we are aware of) are the Fourier series method for entire and mero morphic functions, a study of integer valued entire functions, the Malliavin Rubel extension of Carlson's Theorem (the "sampling theorem"), and the first-order theory of the ring of all entire functions, and a final chapter on Tarski's "High School Algebra Problem," a topic from mathematical logic that connects with entire functions. This book grew out of a set of classroom notes for a course given at the University of Illinois in 1963, but they have been much changed, corrected, expanded, and updated, partially for a similar course at the same place in 1993. My thanks to the many students who prepared notes and have given corrections and comments.
Quantum Calculus
Author: Victor Kac
Publisher: Springer Science & Business Media
ISBN: 1461300711
Category : Mathematics
Languages : en
Pages : 121
Book Description
Simply put, quantum calculus is ordinary calculus without taking limits. This undergraduate text develops two types of quantum calculi, the q-calculus and the h-calculus. As this book develops quantum calculus along the lines of traditional calculus, the reader discovers, with a remarkable inevitability, many important notions and results of classical mathematics. This book is written at the level of a first course in calculus and linear algebra and is aimed at undergraduate and beginning graduate students in mathematics, computer science, and physics. It is based on lectures and seminars given by MIT Professor Kac over the last few years at MIT.
Publisher: Springer Science & Business Media
ISBN: 1461300711
Category : Mathematics
Languages : en
Pages : 121
Book Description
Simply put, quantum calculus is ordinary calculus without taking limits. This undergraduate text develops two types of quantum calculi, the q-calculus and the h-calculus. As this book develops quantum calculus along the lines of traditional calculus, the reader discovers, with a remarkable inevitability, many important notions and results of classical mathematics. This book is written at the level of a first course in calculus and linear algebra and is aimed at undergraduate and beginning graduate students in mathematics, computer science, and physics. It is based on lectures and seminars given by MIT Professor Kac over the last few years at MIT.
Matrix Theory
Author: Fuzhen Zhang
Publisher: Springer Science & Business Media
ISBN: 1475757972
Category : Mathematics
Languages : en
Pages : 290
Book Description
This volume concisely presents fundamental ideas, results, and techniques in linear algebra and mainly matrix theory. Each chapter focuses on the results, techniques, and methods that are beautiful, interesting, and representative, followed by carefully selected problems. For many theorems several different proofs are given. The only prerequisites are a decent background in elementary linear algebra and calculus.
Publisher: Springer Science & Business Media
ISBN: 1475757972
Category : Mathematics
Languages : en
Pages : 290
Book Description
This volume concisely presents fundamental ideas, results, and techniques in linear algebra and mainly matrix theory. Each chapter focuses on the results, techniques, and methods that are beautiful, interesting, and representative, followed by carefully selected problems. For many theorems several different proofs are given. The only prerequisites are a decent background in elementary linear algebra and calculus.