QBism

QBism PDF Author: Hans Christian von Baeyer
Publisher: Harvard University Press
ISBN: 0674545109
Category : Science
Languages : en
Pages : 268

Get Book Here

Book Description
Measured by the accuracy of its predictions and the scope of its technological applications, quantum mechanics is one of the most successful theories in science—as well as one of the most misunderstood. The deeper meaning of quantum mechanics remains controversial almost a century after its invention. Providing a way past quantum theory’s paradoxes and puzzles, QBism offers a strikingly new interpretation that opens up for the nonspecialist reader the profound implications of quantum mechanics for how we understand and interact with the world. Short for Quantum Bayesianism, QBism adapts many of the conventional features of quantum mechanics in light of a revised understanding of probability. Bayesian probability, unlike the standard “frequentist probability,” is defined as a numerical measure of the degree of an observer’s belief that a future event will occur or that a particular proposition is true. Bayesianism’s advantages over frequentist probability are that it is applicable to singular events, its probability estimates can be updated based on acquisition of new information, and it can effortlessly include frequentist results. But perhaps most important, much of the weirdness associated with quantum theory—the idea that an atom can be in two places at once, or that signals can travel faster than the speed of light, or that Schrödinger’s cat can be simultaneously dead and alive—dissolves under the lens of QBism. Using straightforward language without equations, Hans Christian von Baeyer clarifies the meaning of quantum mechanics in a commonsense way that suggests a new approach to physics in general.

QBism

QBism PDF Author: Hans Christian von Baeyer
Publisher: Harvard University Press
ISBN: 0674545109
Category : Science
Languages : en
Pages : 268

Get Book Here

Book Description
Measured by the accuracy of its predictions and the scope of its technological applications, quantum mechanics is one of the most successful theories in science—as well as one of the most misunderstood. The deeper meaning of quantum mechanics remains controversial almost a century after its invention. Providing a way past quantum theory’s paradoxes and puzzles, QBism offers a strikingly new interpretation that opens up for the nonspecialist reader the profound implications of quantum mechanics for how we understand and interact with the world. Short for Quantum Bayesianism, QBism adapts many of the conventional features of quantum mechanics in light of a revised understanding of probability. Bayesian probability, unlike the standard “frequentist probability,” is defined as a numerical measure of the degree of an observer’s belief that a future event will occur or that a particular proposition is true. Bayesianism’s advantages over frequentist probability are that it is applicable to singular events, its probability estimates can be updated based on acquisition of new information, and it can effortlessly include frequentist results. But perhaps most important, much of the weirdness associated with quantum theory—the idea that an atom can be in two places at once, or that signals can travel faster than the speed of light, or that Schrödinger’s cat can be simultaneously dead and alive—dissolves under the lens of QBism. Using straightforward language without equations, Hans Christian von Baeyer clarifies the meaning of quantum mechanics in a commonsense way that suggests a new approach to physics in general.

QBism

QBism PDF Author: Hans Christian von Baeyer
Publisher: Harvard University Press
ISBN: 067450464X
Category : Science
Languages : en
Pages : 268

Get Book Here

Book Description
Measured by the accuracy of its predictions and the scope of its technological applications, quantum mechanics is one of the most successful theories in science—as well as one of the most misunderstood. The deeper meaning of quantum mechanics remains controversial almost a century after its invention. Providing a way past quantum theory’s paradoxes and puzzles, QBism offers a strikingly new interpretation that opens up for the nonspecialist reader the profound implications of quantum mechanics for how we understand and interact with the world. Short for Quantum Bayesianism, QBism adapts many of the conventional features of quantum mechanics in light of a revised understanding of probability. Bayesian probability, unlike the standard “frequentist probability,” is defined as a numerical measure of the degree of an observer’s belief that a future event will occur or that a particular proposition is true. Bayesianism’s advantages over frequentist probability are that it is applicable to singular events, its probability estimates can be updated based on acquisition of new information, and it can effortlessly include frequentist results. But perhaps most important, much of the weirdness associated with quantum theory—the idea that an atom can be in two places at once, or that signals can travel faster than the speed of light, or that Schrödinger’s cat can be simultaneously dead and alive—dissolves under the lens of QBism. Using straightforward language without equations, Hans Christian von Baeyer clarifies the meaning of quantum mechanics in a commonsense way that suggests a new approach to physics in general.

Phenomenology and QBism

Phenomenology and QBism PDF Author: Philipp Berghofer
Publisher: Taylor & Francis
ISBN: 1003824269
Category : Philosophy
Languages : en
Pages : 409

Get Book Here

Book Description
This volume brings together philosophers and physicists to explore the parallels between Quantum Bayesianism, or QBism, and the phenomenological tradition. It is the first book exclusively devoted to phenomenology and quantum mechanics. By emphasizing the role of the subject’s experiences and expectations, and by explicitly rejecting the idea that the notion of physical reality could ever be reduced to a purely third-person perspective, QBism exhibits several interesting parallels with phenomenology. The central message of QBism is that quantum probabilities must be interpreted as the experiencing agent’s personal Bayesian degrees of belief – degrees of belief for the consequences of their actions on a quantum system. The chapters in this volume elaborate on whether and specify how phenomenology could serve as the philosophical foundation of QBism. This objective is pursued from the perspective of QBists engaging with phenomenology as well as the perspective of phenomenologists engaging with QBism. These approaches enable us to realize a better understanding of quantum mechanics and the world we live in, achieve a better understanding of QBsim, and introduce the phenomenological foundations of quantum mechanics. Phenomenology and QBism is an essential resource for researchers and graduate students working in the philosophy of physics, philosophy of science, quantum mechanics, and phenomenology.

The Quantum Revolution in Philosophy

The Quantum Revolution in Philosophy PDF Author: Richard Healey
Publisher: Oxford University Press
ISBN: 0191023442
Category : Philosophy
Languages : en
Pages : 288

Get Book Here

Book Description
Quantum theory launched a revolution in physics. But we have yet to understand the revolution's significance for philosophy. Richard Healey opens a path to such understanding. Most studies of the conceptual foundations of quantum theory first try to interpret the theory - to say how the world could possibly be the way the theory says it is. But, though fundamental, quantum theory is enormously successful without describing the world in its own terms. When properly applied, models of quantum theory offer good advice on the significance and credibility of claims about the world expressed in other terms. This first philosophical lesson of the quantum revolution dissolves the quantum measurement problem. Pragmatist treatments of probability and causation show how quantum theory may be used to explain the non-localized correlations that have been thought to involve "spooky" instantaneous action at a distance. Given environmental decoherence, a pragmatist inferentialist approach to content shows when talk of quantum probabilities is licensed, resolves any residual worries about whether a quantum measurement has a determinate outcome, and solves a dilemma about the ontology of a quantum field theory. This approach to meaning and reference also reveals the nature and limits of objective description in the light of quantum theory. While these pragmatist approaches to probability, causation, explanation and content may be independently motivated by philosophical argument, their successful application here illustrates their practical importance in helping philosophers come to terms with the quantum revolution.

Something Deeply Hidden

Something Deeply Hidden PDF Author: Sean Carroll
Publisher: Penguin
ISBN: 1524743038
Category : Science
Languages : en
Pages : 369

Get Book Here

Book Description
INSTANT NEW YORK TIMES BESTSELLER As you read these words, copies of you are being created. Sean Carroll, theoretical physicist and one of this world’s most celebrated writers on science, rewrites the history of twentieth-century physics. Already hailed as a masterpiece, Something Deeply Hidden shows for the first time that facing up to the essential puzzle of quantum mechanics utterly transforms how we think about space and time. His reconciling of quantum mechanics with Einstein’s theory of relativity changes, well, everything. Most physicists haven’t even recognized the uncomfortable truth: Physics has been in crisis since 1927. Quantum mechanics has always had obvious gaps—which have come to be simply ignored. Science popularizers keep telling us how weird it is, how impossible it is to understand. Academics discourage students from working on the "dead end" of quantum foundations. Putting his professional reputation on the line with this audacious yet entirely reasonable book, Carroll says that the crisis can now come to an end. We just have to accept that there is more than one of us in the universe. There are many, many Sean Carrolls. Many of every one of us. Copies of you are generated thousands of times per second. The Many-Worlds theory of quantum behavior says that every time there is a quantum event, a world splits off with everything in it the same, except in that other world the quantum event didn't happen. Step-by-step in Carroll's uniquely lucid way, he tackles the major objections to this otherworldly revelation until his case is inescapably established. Rarely does a book so fully reorganize how we think about our place in the universe. We are on the threshold of a new understanding—of where we are in the cosmos, and what we are made of.

Quantum Entanglement

Quantum Entanglement PDF Author: Jed Brody
Publisher: MIT Press
ISBN: 0262357623
Category : Science
Languages : en
Pages : 184

Get Book Here

Book Description
An exploration of quantum entanglement and the ways in which it contradicts our everyday assumptions about the ultimate nature of reality. Quantum physics is notable for its brazen defiance of common sense. (Think of Schrödinger's Cat, famously both dead and alive.) An especially rigorous form of quantum contradiction occurs in experiments with entangled particles. Our common assumption is that objects have properties whether or not anyone is observing them, and the measurement of one can't affect the other. Quantum entanglement—called by Einstein “spooky action at a distance”—rejects this assumption, offering impeccable reasoning and irrefutable evidence of the opposite. Is quantum entanglement mystical, or just mystifying? In this volume in the MIT Press Essential Knowledge series, Jed Brody equips readers to decide for themselves. He explains how our commonsense assumptions impose constraints—from which entangled particles break free. Brody explores such concepts as local realism, Bell's inequality, polarization, time dilation, and special relativity. He introduces readers to imaginary physicists Alice and Bob and their photon analyses; points out that it's easier to reject falsehood than establish the truth; and reports that some physicists explain entanglement by arguing that we live in a cross-section of a higher-dimensional reality. He examines a variety of viewpoints held by physicists, including quantum decoherence, Niels Bohr's Copenhagen interpretation, genuine fortuitousness, and QBism. This relatively recent interpretation, an abbreviation of “quantum Bayesianism,” holds that there's no such thing as an absolutely accurate, objective probability “out there,” that quantum mechanical probabilities are subjective judgments, and there's no “action at a distance,” spooky or otherwise.

On Theories

On Theories PDF Author: William Demopoulos
Publisher: Harvard University Press
ISBN: 0674237579
Category : Science
Languages : en
Pages : 273

Get Book Here

Book Description
A renowned philosopherÕs final work, illuminating how the logical empiricist tradition has failed to appreciate the role of actual experiments in forming its philosophy of science. The logical empiricist treatment of physics dominated twentieth-century philosophy of science. But the logical empiricist tradition, for all it accomplished, does not do justice to the way in which empirical evidence functions in modern physics. In his final work, the late philosopher of science William Demopoulos contends that philosophers have failed to provide an adequate epistemology of science because they have failed to appreciate the tightly woven character of theory and evidence. As a consequence, theory comes apart from evidence. This trouble is nowhere more evident than in theorizing about particle and quantum physics. Arguing that we must consider actual experiments as they have unfolded across history, Demopoulos provides a new epistemology of theories and evidence, albeit one that stands on the shoulders of giants. On Theories finds clarity in Isaac NewtonÕs suspicion of mere Òhypotheses.Ó NewtonÕs methodology lies in the background of Jean PerrinÕs experimental investigations of molecular reality and of the subatomic investigations of J. J. Thomson and Robert Millikan. Demopoulos extends this account to offer novel insights into the distinctive nature of quantum reality, where a logico-mathematical reconstruction of Bohrian complementarity meets John Stewart BellÕs empirical analysis of EinsteinÕs Òlocal realism.Ó On Theories ultimately provides a new interpretation of quantum probabilities as themselves objectively representing empirical reality.

The Oxford Handbook of the History of Quantum Interpretations

The Oxford Handbook of the History of Quantum Interpretations PDF Author: Guido Bacciagaluppi
Publisher: Oxford University Press
ISBN: 0198844492
Category : Science
Languages : en
Pages : 1311

Get Book Here

Book Description
Crucial to most research in physics, as well as leading to the development of inventions such as the transistor and the laser, quantum mechanics approaches its centenary with an impressive record. However, the field has also long been the subject of ongoing debates about the foundations and interpretation of the theory, referred to as the quantum controversy. This Oxford Handbook offers a historical overview of the contrasts which have been at the heart of quantum physics for the last 100 years. Drawing on the wide-ranging expertise of several contributors working across physics, history, and philosophy, the handbook outlines the main theories and interpretations of quantum physics. It goes on to tackle the key controversies surrounding the field, touching on issues such as determinism, realism, locality, classicality, information, measurements, mathematical foundations, and the links between quantum theory and gravity. This engaging introduction is an essential guide for all those interested in the history of scientific controversies and history of quantum physics. It also provides a fascinating examination of the potential of quantum physics to influence new discoveries and advances in fields such quantum information and computing.

Quantum Mechanics Between Ontology and Epistemology

Quantum Mechanics Between Ontology and Epistemology PDF Author: Florian J. Boge
Publisher: Springer
ISBN: 3319957651
Category : Science
Languages : en
Pages : 432

Get Book Here

Book Description
This book explores the prospects of rivaling ontological and epistemic interpretations of quantum mechanics (QM). It concludes with a suggestion for how to interpret QM from an epistemological point of view and with a Kantian touch. It thus refines, extends, and combines existing approaches in a similar direction. The author first looks at current, hotly debated ontological interpretations. These include hidden variables-approaches, Bohmian mechanics, collapse interpretations, and the many worlds interpretation. He demonstrates why none of these ontological interpretations can claim to be the clear winner amongst its rivals. Next, coverage explores the possibility of interpreting QM in terms of knowledge but without the assumption of hidden variables. It examines QBism as well as Healey’s pragmatist view. The author finds both interpretations or programs appealing, but still wanting in certain respects. As a result, he then goes on to advance a genuine proposal as to how to interpret QM from the perspective of an internal realism in the sense of Putnam and Kant. The book also includes two philosophical interludes. One details the notions of probability and realism. The other highlights the connections between the notions of locality, causality, and reality in the context of violations of Bell-type inequalities.

Protective Measurement and Quantum Reality

Protective Measurement and Quantum Reality PDF Author: Shan Gao
Publisher: Cambridge University Press
ISBN: 1107069637
Category : Psychology
Languages : en
Pages : 251

Get Book Here

Book Description
With contributions from two of the original discoverers of protective measurement, this book investigates its broad applications and deep implications. Addressing both physical and philosophical aspects, this is a valuable resource for graduate students and researchers interested in the conceptual foundations of quantum mechanics.