Machine Learning and Data Science Blueprints for Finance

Machine Learning and Data Science Blueprints for Finance PDF Author: Hariom Tatsat
Publisher: "O'Reilly Media, Inc."
ISBN: 1492073008
Category : Computers
Languages : en
Pages : 426

Get Book Here

Book Description
Over the next few decades, machine learning and data science will transform the finance industry. With this practical book, analysts, traders, researchers, and developers will learn how to build machine learning algorithms crucial to the industry. You'll examine ML concepts and over 20 case studies in supervised, unsupervised, and reinforcement learning, along with natural language processing (NLP). Ideal for professionals working at hedge funds, investment and retail banks, and fintech firms, this book also delves deep into portfolio management, algorithmic trading, derivative pricing, fraud detection, asset price prediction, sentiment analysis, and chatbot development. You'll explore real-life problems faced by practitioners and learn scientifically sound solutions supported by code and examples. This book covers: Supervised learning regression-based models for trading strategies, derivative pricing, and portfolio management Supervised learning classification-based models for credit default risk prediction, fraud detection, and trading strategies Dimensionality reduction techniques with case studies in portfolio management, trading strategy, and yield curve construction Algorithms and clustering techniques for finding similar objects, with case studies in trading strategies and portfolio management Reinforcement learning models and techniques used for building trading strategies, derivatives hedging, and portfolio management NLP techniques using Python libraries such as NLTK and scikit-learn for transforming text into meaningful representations

Machine Learning and Data Science Blueprints for Finance

Machine Learning and Data Science Blueprints for Finance PDF Author: Hariom Tatsat
Publisher: "O'Reilly Media, Inc."
ISBN: 1492073008
Category : Computers
Languages : en
Pages : 426

Get Book Here

Book Description
Over the next few decades, machine learning and data science will transform the finance industry. With this practical book, analysts, traders, researchers, and developers will learn how to build machine learning algorithms crucial to the industry. You'll examine ML concepts and over 20 case studies in supervised, unsupervised, and reinforcement learning, along with natural language processing (NLP). Ideal for professionals working at hedge funds, investment and retail banks, and fintech firms, this book also delves deep into portfolio management, algorithmic trading, derivative pricing, fraud detection, asset price prediction, sentiment analysis, and chatbot development. You'll explore real-life problems faced by practitioners and learn scientifically sound solutions supported by code and examples. This book covers: Supervised learning regression-based models for trading strategies, derivative pricing, and portfolio management Supervised learning classification-based models for credit default risk prediction, fraud detection, and trading strategies Dimensionality reduction techniques with case studies in portfolio management, trading strategy, and yield curve construction Algorithms and clustering techniques for finding similar objects, with case studies in trading strategies and portfolio management Reinforcement learning models and techniques used for building trading strategies, derivatives hedging, and portfolio management NLP techniques using Python libraries such as NLTK and scikit-learn for transforming text into meaningful representations

Blueprints for Text Analytics Using Python

Blueprints for Text Analytics Using Python PDF Author: Jens Albrecht
Publisher: "O'Reilly Media, Inc."
ISBN: 1492074039
Category : Computers
Languages : en
Pages : 457

Get Book Here

Book Description
Turning text into valuable information is essential for businesses looking to gain a competitive advantage. With recent improvements in natural language processing (NLP), users now have many options for solving complex challenges. But it's not always clear which NLP tools or libraries would work for a business's needs, or which techniques you should use and in what order. This practical book provides data scientists and developers with blueprints for best practice solutions to common tasks in text analytics and natural language processing. Authors Jens Albrecht, Sidharth Ramachandran, and Christian Winkler provide real-world case studies and detailed code examples in Python to help you get started quickly. Extract data from APIs and web pages Prepare textual data for statistical analysis and machine learning Use machine learning for classification, topic modeling, and summarization Explain AI models and classification results Explore and visualize semantic similarities with word embeddings Identify customer sentiment in product reviews Create a knowledge graph based on named entities and their relations

Python Machine Learning Blueprints

Python Machine Learning Blueprints PDF Author: Alexander Combs
Publisher: Packt Publishing
ISBN: 9781784394752
Category : Computers
Languages : en
Pages : 332

Get Book Here

Book Description


Python Machine Learning Blueprints

Python Machine Learning Blueprints PDF Author: Alexander Combs
Publisher: Packt Publishing
ISBN: 9781788994170
Category :
Languages : en
Pages : 378

Get Book Here

Book Description
Discover a project-based approach to mastering machine learning concepts by applying them to everyday problems using libraries such as scikit-learn, TensorFlow, and Keras Key Features Get to grips with Python's machine learning libraries including scikit-learn, TensorFlow, and Keras Implement advanced concepts and popular machine learning algorithms in real-world projects Build analytics, computer vision, and neural network projects Book Description Machine learning is transforming the way we understand and interact with the world around us. This book is the perfect guide for you to put your knowledge and skills into practice and use the Python ecosystem to cover key domains in machine learning. This second edition covers a range of libraries from the Python ecosystem, including TensorFlow and Keras, to help you implement real-world machine learning projects. The book begins by giving you an overview of machine learning with Python. With the help of complex datasets and optimized techniques, you'll go on to understand how to apply advanced concepts and popular machine learning algorithms to real-world projects. Next, you'll cover projects from domains such as predictive analytics to analyze the stock market and recommendation systems for GitHub repositories. In addition to this, you'll also work on projects from the NLP domain to create a custom news feed using frameworks such as scikit-learn, TensorFlow, and Keras. Following this, you'll learn how to build an advanced chatbot, and scale things up using PySpark. In the concluding chapters, you can look forward to exciting insights into deep learning and you'll even create an application using computer vision and neural networks. By the end of this book, you'll be able to analyze data seamlessly and make a powerful impact through your projects. What you will learn Understand the Python data science stack and commonly used algorithms Build a model to forecast the performance of an Initial Public Offering (IPO) over an initial discrete trading window Understand NLP concepts by creating a custom news feed Create applications that will recommend GitHub repositories based on ones you've starred, watched, or forked Gain the skills to build a chatbot from scratch using PySpark Develop a market-prediction app using stock data Delve into advanced concepts such as computer vision, neural networks, and deep learning Who this book is for This book is for machine learning practitioners, data scientists, and deep learning enthusiasts who want to take their machine learning skills to the next level by building real-world projects. The intermediate-level guide will help you to implement libraries from the Python ecosystem to build a variety of projects addressing various machine learning domains. Knowledge of Python programming and machine learning concepts will be helpful.

AI Blueprints

AI Blueprints PDF Author: Dr. Joshua Eckroth
Publisher: Packt Publishing Ltd
ISBN: 1788997972
Category : Computers
Languages : en
Pages : 251

Get Book Here

Book Description
The essential blueprints and workflow you need to build successful AI business applications Key FeaturesLearn and master the essential blueprints to program AI for real-world business applicationsGain insights into how modern AI and machine learning solve core business challengesAcquire practical techniques and a workflow that can build AI applications using state-of-the-art software librariesWork with a practical, code-based strategy for creating successful AI solutions in your businessBook Description AI Blueprints gives you a working framework and the techniques to build your own successful AI business applications. You’ll learn across six business scenarios how AI can solve critical challenges with state-of-the-art AI software libraries and a well thought out workflow. Along the way you’ll discover the practical techniques to build AI business applications from first design to full coding and deployment. The AI blueprints in this book solve key business scenarios. The first blueprint uses AI to find solutions for building plans for cloud computing that are on-time and under budget. The second blueprint involves an AI system that continuously monitors social media to gauge public feeling about a topic of interest - such as self-driving cars. You’ll learn how to approach AI business problems and apply blueprints that can ensure success. The next AI scenario shows you how to approach the problem of creating a recommendation engine and monitoring how those recommendations perform. The fourth blueprint shows you how to use deep learning to find your business logo in social media photos and assess how people interact with your products. Learn the practical techniques involved and how to apply these blueprints intelligently. The fifth blueprint is about how to best design a ‘trending now’ section on your website, much like the one we know from Twitter. The sixth blueprint shows how to create helpful chatbots so that an AI system can understand customers’ questions and answer them with relevant responses. This book continuously demonstrates a working framework and strategy for building AI business applications. Along the way, you’ll also learn how to prepare for future advances in AI. You’ll gain a workflow and a toolbox of patterns and techniques so that you can create your own smart code. What you will learnAn essential toolbox of blueprints and advanced techniques for building AI business applicationsHow to design and deploy AI applications that meet today’s business needsA workflow from first design stages to practical code solutions in your next AI projectsSolutions for AI projects that involve social media analytics and recommendation enginesPractical projects and techniques for sentiment analysis and helpful chatbotsA blueprint for AI projects that recommend products based on customer purchasing habitsHow to prepare yourself for the next decade of AI and machine learning advancementsWho this book is for Programming AI Business Applications provides an introduction to AI with real-world examples. This book can be read and understood by programmers and students without requiring previous AI experience. The projects in this book make use of Java and Python and several popular and state-of-the-art opensource AI libraries.

OpenCV 4 with Python Blueprints

OpenCV 4 with Python Blueprints PDF Author: Dr. Menua Gevorgyan
Publisher: Packt Publishing Ltd
ISBN: 1789617634
Category : Computers
Languages : en
Pages : 356

Get Book Here

Book Description
Get to grips with traditional computer vision algorithms and deep learning approaches, and build real-world applications with OpenCV and other machine learning frameworks Key FeaturesUnderstand how to capture high-quality image data, detect and track objects, and process the actions of animals or humansImplement your learning in different areas of computer visionExplore advanced concepts in OpenCV such as machine learning, artificial neural network, and augmented realityBook Description OpenCV is a native cross-platform C++ library for computer vision, machine learning, and image processing. It is increasingly being adopted in Python for development. This book will get you hands-on with a wide range of intermediate to advanced projects using the latest version of the framework and language, OpenCV 4 and Python 3.8, instead of only covering the core concepts of OpenCV in theoretical lessons. This updated second edition will guide you through working on independent hands-on projects that focus on essential OpenCV concepts such as image processing, object detection, image manipulation, object tracking, and 3D scene reconstruction, in addition to statistical learning and neural networks. You’ll begin with concepts such as image filters, Kinect depth sensor, and feature matching. As you advance, you’ll not only get hands-on with reconstructing and visualizing a scene in 3D but also learn to track visually salient objects. The book will help you further build on your skills by demonstrating how to recognize traffic signs and emotions on faces. Later, you’ll understand how to align images, and detect and track objects using neural networks. By the end of this OpenCV Python book, you’ll have gained hands-on experience and become proficient at developing advanced computer vision apps according to specific business needs. What you will learnGenerate real-time visual effects using filters and image manipulation techniques such as dodging and burningRecognize hand gestures in real-time and perform hand-shape analysis based on the output of a Microsoft Kinect sensorLearn feature extraction and feature matching to track arbitrary objects of interestReconstruct a 3D real-world scene using 2D camera motion and camera reprojection techniquesDetect faces using a cascade classifier and identify emotions in human faces using multilayer perceptronsClassify, localize, and detect objects with deep neural networksWho this book is for This book is for intermediate-level OpenCV users who are looking to enhance their skills by developing advanced applications. Familiarity with OpenCV concepts and Python libraries, and basic knowledge of the Python programming language are assumed.

Python Programming Blueprints

Python Programming Blueprints PDF Author: Daniel Furtado
Publisher: Packt Publishing Ltd
ISBN: 178646490X
Category : Computers
Languages : en
Pages : 449

Get Book Here

Book Description
Python is a very powerful, high-level, object-oriented programming language. It has swiftly developed over the years to become the language of choice for software developers due to its simplicity. This book takes you through varied and real-life projects. The examples start with the basics and gradually increase in complexity, helping boost ...

Advances in Financial Machine Learning

Advances in Financial Machine Learning PDF Author: Marcos Lopez de Prado
Publisher: John Wiley & Sons
ISBN: 1119482119
Category : Business & Economics
Languages : en
Pages : 395

Get Book Here

Book Description
Learn to understand and implement the latest machine learning innovations to improve your investment performance Machine learning (ML) is changing virtually every aspect of our lives. Today, ML algorithms accomplish tasks that – until recently – only expert humans could perform. And finance is ripe for disruptive innovations that will transform how the following generations understand money and invest. In the book, readers will learn how to: Structure big data in a way that is amenable to ML algorithms Conduct research with ML algorithms on big data Use supercomputing methods and back test their discoveries while avoiding false positives Advances in Financial Machine Learning addresses real life problems faced by practitioners every day, and explains scientifically sound solutions using math, supported by code and examples. Readers become active users who can test the proposed solutions in their individual setting. Written by a recognized expert and portfolio manager, this book will equip investment professionals with the groundbreaking tools needed to succeed in modern finance.

OpenCV with Python Blueprints

OpenCV with Python Blueprints PDF Author: Michael Beyeler
Publisher:
ISBN: 9781785282690
Category : Application software
Languages : en
Pages : 0

Get Book Here

Book Description
Design and develop advanced computer vision projects using OpenCV with PythonAbout This Book* Program advanced computer vision applications in Python using different features of the OpenCV library* Practical end-to-end project covering an important computer vision problem* All projects in the book include a step-by-step guide to create computer vision applicationsWho This Book Is ForThis book is for intermediate users of OpenCV who aim to master their skills by developing advanced practical applications. Readers are expected to be familiar with OpenCV's concepts and Python libraries. Basic knowledge of Python programming is expected and assumed.What You Will Learn* Generate real-time visual effects using different filters and image manipulation techniques such as dodging and burning* Recognize hand gestures in real time and perform hand-shape analysis based on the output of a Microsoft Kinect sensor* Learn feature extraction and feature matching for tracking arbitrary objects of interest* Reconstruct a 3D real-world scene from 2D camera motion and common camera reprojection techniques* Track visually salient objects by searching for and focusing on important regions of an image* Detect faces using a cascade classifier and recognize emotional expressions in human faces using multi-layer peceptrons (MLPs)* Recognize street signs using a multi-class adaptation of support vector machines (SVMs)* Strengthen your OpenCV2 skills and learn how to use new OpenCV3 featuresIn DetailOpenCV is a native cross platform C++ Library for computer vision, machine learning, and image processing. It is increasingly being adopted in Python for development. OpenCV has C++/C, Python, and Java interfaces with support for Windows, Linux, Mac, iOS, and Android. Developers using OpenCV build applications to process visual data; this can include live streaming data from a device like a camera, such as photographs or videos. OpenCV offers extensive libraries with over 500 functionsThis book demonstrates how to develop a series of intermediate to advanced projects using OpenCV and Python, rather than teaching the core concepts of OpenCV in theoretical lessons. Instead, the working projects developed in this book teach the reader how to apply their theoretical knowledge to topics such as image manipulation, augmented reality, object tracking, 3D scene reconstruction, statistical learning, and object categorization.By the end of this book, readers will be OpenCV experts whose newly gained experience allows them to develop their own advanced computer vision applications.Style and approachThis book covers independent hands-on projects that teach important computer vision concepts like image processing and machine learning for OpenCV with multiple examples.

Python Machine Learning By Example

Python Machine Learning By Example PDF Author: Yuxi (Hayden) Liu
Publisher: Packt Publishing Ltd
ISBN: 178355312X
Category : Computers
Languages : en
Pages : 249

Get Book Here

Book Description
Take tiny steps to enter the big world of data science through this interesting guide About This Book Learn the fundamentals of machine learning and build your own intelligent applications Master the art of building your own machine learning systems with this example-based practical guide Work with important classification and regression algorithms and other machine learning techniques Who This Book Is For This book is for anyone interested in entering the data science stream with machine learning. Basic familiarity with Python is assumed. What You Will Learn Exploit the power of Python to handle data extraction, manipulation, and exploration techniques Use Python to visualize data spread across multiple dimensions and extract useful features Dive deep into the world of analytics to predict situations correctly Implement machine learning classification and regression algorithms from scratch in Python Be amazed to see the algorithms in action Evaluate the performance of a machine learning model and optimize it Solve interesting real-world problems using machine learning and Python as the journey unfolds In Detail Data science and machine learning are some of the top buzzwords in the technical world today. A resurging interest in machine learning is due to the same factors that have made data mining and Bayesian analysis more popular than ever. This book is your entry point to machine learning. This book starts with an introduction to machine learning and the Python language and shows you how to complete the setup. Moving ahead, you will learn all the important concepts such as, exploratory data analysis, data preprocessing, feature extraction, data visualization and clustering, classification, regression and model performance evaluation. With the help of various projects included, you will find it intriguing to acquire the mechanics of several important machine learning algorithms – they are no more obscure as they thought. Also, you will be guided step by step to build your own models from scratch. Toward the end, you will gather a broad picture of the machine learning ecosystem and best practices of applying machine learning techniques. Through this book, you will learn to tackle data-driven problems and implement your solutions with the powerful yet simple language, Python. Interesting and easy-to-follow examples, to name some, news topic classification, spam email detection, online ad click-through prediction, stock prices forecast, will keep you glued till you reach your goal. Style and approach This book is an enticing journey that starts from the very basics and gradually picks up pace as the story unfolds. Each concept is first succinctly defined in the larger context of things, followed by a detailed explanation of their application. Every concept is explained with the help of a project that solves a real-world problem, and involves hands-on work—giving you a deep insight into the world of machine learning. With simple yet rich language—Python—you will understand and be able to implement the examples with ease.