Author: Jacob Perkins
Publisher: Packt Publishing Ltd
ISBN: 1782167862
Category : Computers
Languages : en
Pages : 530
Book Description
This book is intended for Python programmers interested in learning how to do natural language processing. Maybe you’ve learned the limits of regular expressions the hard way, or you’ve realized that human language cannot be deterministically parsed like a computer language. Perhaps you have more text than you know what to do with, and need automated ways to analyze and structure that text. This Cookbook will show you how to train and use statistical language models to process text in ways that are practically impossible with standard programming tools. A basic knowledge of Python and the basic text processing concepts is expected. Some experience with regular expressions will also be helpful.
Python 3 Text Processing with NLTK 3 Cookbook
Author: Jacob Perkins
Publisher: Packt Publishing Ltd
ISBN: 1782167862
Category : Computers
Languages : en
Pages : 530
Book Description
This book is intended for Python programmers interested in learning how to do natural language processing. Maybe you’ve learned the limits of regular expressions the hard way, or you’ve realized that human language cannot be deterministically parsed like a computer language. Perhaps you have more text than you know what to do with, and need automated ways to analyze and structure that text. This Cookbook will show you how to train and use statistical language models to process text in ways that are practically impossible with standard programming tools. A basic knowledge of Python and the basic text processing concepts is expected. Some experience with regular expressions will also be helpful.
Publisher: Packt Publishing Ltd
ISBN: 1782167862
Category : Computers
Languages : en
Pages : 530
Book Description
This book is intended for Python programmers interested in learning how to do natural language processing. Maybe you’ve learned the limits of regular expressions the hard way, or you’ve realized that human language cannot be deterministically parsed like a computer language. Perhaps you have more text than you know what to do with, and need automated ways to analyze and structure that text. This Cookbook will show you how to train and use statistical language models to process text in ways that are practically impossible with standard programming tools. A basic knowledge of Python and the basic text processing concepts is expected. Some experience with regular expressions will also be helpful.
Natural Language Processing with Python
Author: Steven Bird
Publisher: "O'Reilly Media, Inc."
ISBN: 0596555717
Category : Computers
Languages : en
Pages : 506
Book Description
This book offers a highly accessible introduction to natural language processing, the field that supports a variety of language technologies, from predictive text and email filtering to automatic summarization and translation. With it, you'll learn how to write Python programs that work with large collections of unstructured text. You'll access richly annotated datasets using a comprehensive range of linguistic data structures, and you'll understand the main algorithms for analyzing the content and structure of written communication. Packed with examples and exercises, Natural Language Processing with Python will help you: Extract information from unstructured text, either to guess the topic or identify "named entities" Analyze linguistic structure in text, including parsing and semantic analysis Access popular linguistic databases, including WordNet and treebanks Integrate techniques drawn from fields as diverse as linguistics and artificial intelligence This book will help you gain practical skills in natural language processing using the Python programming language and the Natural Language Toolkit (NLTK) open source library. If you're interested in developing web applications, analyzing multilingual news sources, or documenting endangered languages -- or if you're simply curious to have a programmer's perspective on how human language works -- you'll find Natural Language Processing with Python both fascinating and immensely useful.
Publisher: "O'Reilly Media, Inc."
ISBN: 0596555717
Category : Computers
Languages : en
Pages : 506
Book Description
This book offers a highly accessible introduction to natural language processing, the field that supports a variety of language technologies, from predictive text and email filtering to automatic summarization and translation. With it, you'll learn how to write Python programs that work with large collections of unstructured text. You'll access richly annotated datasets using a comprehensive range of linguistic data structures, and you'll understand the main algorithms for analyzing the content and structure of written communication. Packed with examples and exercises, Natural Language Processing with Python will help you: Extract information from unstructured text, either to guess the topic or identify "named entities" Analyze linguistic structure in text, including parsing and semantic analysis Access popular linguistic databases, including WordNet and treebanks Integrate techniques drawn from fields as diverse as linguistics and artificial intelligence This book will help you gain practical skills in natural language processing using the Python programming language and the Natural Language Toolkit (NLTK) open source library. If you're interested in developing web applications, analyzing multilingual news sources, or documenting endangered languages -- or if you're simply curious to have a programmer's perspective on how human language works -- you'll find Natural Language Processing with Python both fascinating and immensely useful.
Python Natural Language Processing Cookbook
Author: Zhenya Antić
Publisher: Packt Publishing Ltd
ISBN: 1838987789
Category : Computers
Languages : en
Pages : 285
Book Description
Get to grips with solving real-world NLP problems, such as dependency parsing, information extraction, topic modeling, and text data visualization Key Features Analyze varying complexities of text using popular Python packages such as NLTK, spaCy, sklearn, and gensim Implement common and not-so-common linguistic processing tasks using Python libraries Overcome the common challenges faced while implementing NLP pipelines Book DescriptionPython is the most widely used language for natural language processing (NLP) thanks to its extensive tools and libraries for analyzing text and extracting computer-usable data. This book will take you through a range of techniques for text processing, from basics such as parsing the parts of speech to complex topics such as topic modeling, text classification, and visualization. Starting with an overview of NLP, the book presents recipes for dividing text into sentences, stemming and lemmatization, removing stopwords, and parts of speech tagging to help you to prepare your data. You’ll then learn ways of extracting and representing grammatical information, such as dependency parsing and anaphora resolution, discover different ways of representing the semantics using bag-of-words, TF-IDF, word embeddings, and BERT, and develop skills for text classification using keywords, SVMs, LSTMs, and other techniques. As you advance, you’ll also see how to extract information from text, implement unsupervised and supervised techniques for topic modeling, and perform topic modeling of short texts, such as tweets. Additionally, the book shows you how to develop chatbots using NLTK and Rasa and visualize text data. By the end of this NLP book, you’ll have developed the skills to use a powerful set of tools for text processing.What you will learn Become well-versed with basic and advanced NLP techniques in Python Represent grammatical information in text using spaCy, and semantic information using bag-of-words, TF-IDF, and word embeddings Perform text classification using different methods, including SVMs and LSTMs Explore different techniques for topic modeling such as K-means, LDA, NMF, and BERT Work with visualization techniques such as NER and word clouds for different NLP tools Build a basic chatbot using NLTK and Rasa Extract information from text using regular expression techniques and statistical and deep learning tools Who this book is for This book is for data scientists and professionals who want to learn how to work with text. Intermediate knowledge of Python will help you to make the most out of this book. If you are an NLP practitioner, this book will serve as a code reference when working on your projects.
Publisher: Packt Publishing Ltd
ISBN: 1838987789
Category : Computers
Languages : en
Pages : 285
Book Description
Get to grips with solving real-world NLP problems, such as dependency parsing, information extraction, topic modeling, and text data visualization Key Features Analyze varying complexities of text using popular Python packages such as NLTK, spaCy, sklearn, and gensim Implement common and not-so-common linguistic processing tasks using Python libraries Overcome the common challenges faced while implementing NLP pipelines Book DescriptionPython is the most widely used language for natural language processing (NLP) thanks to its extensive tools and libraries for analyzing text and extracting computer-usable data. This book will take you through a range of techniques for text processing, from basics such as parsing the parts of speech to complex topics such as topic modeling, text classification, and visualization. Starting with an overview of NLP, the book presents recipes for dividing text into sentences, stemming and lemmatization, removing stopwords, and parts of speech tagging to help you to prepare your data. You’ll then learn ways of extracting and representing grammatical information, such as dependency parsing and anaphora resolution, discover different ways of representing the semantics using bag-of-words, TF-IDF, word embeddings, and BERT, and develop skills for text classification using keywords, SVMs, LSTMs, and other techniques. As you advance, you’ll also see how to extract information from text, implement unsupervised and supervised techniques for topic modeling, and perform topic modeling of short texts, such as tweets. Additionally, the book shows you how to develop chatbots using NLTK and Rasa and visualize text data. By the end of this NLP book, you’ll have developed the skills to use a powerful set of tools for text processing.What you will learn Become well-versed with basic and advanced NLP techniques in Python Represent grammatical information in text using spaCy, and semantic information using bag-of-words, TF-IDF, and word embeddings Perform text classification using different methods, including SVMs and LSTMs Explore different techniques for topic modeling such as K-means, LDA, NMF, and BERT Work with visualization techniques such as NER and word clouds for different NLP tools Build a basic chatbot using NLTK and Rasa Extract information from text using regular expression techniques and statistical and deep learning tools Who this book is for This book is for data scientists and professionals who want to learn how to work with text. Intermediate knowledge of Python will help you to make the most out of this book. If you are an NLP practitioner, this book will serve as a code reference when working on your projects.
Natural Language Processing: Python and NLTK
Author: Nitin Hardeniya
Publisher: Packt Publishing Ltd
ISBN: 178728784X
Category : Computers
Languages : en
Pages : 687
Book Description
Learn to build expert NLP and machine learning projects using NLTK and other Python libraries About This Book Break text down into its component parts for spelling correction, feature extraction, and phrase transformation Work through NLP concepts with simple and easy-to-follow programming recipes Gain insights into the current and budding research topics of NLP Who This Book Is For If you are an NLP or machine learning enthusiast and an intermediate Python programmer who wants to quickly master NLTK for natural language processing, then this Learning Path will do you a lot of good. Students of linguistics and semantic/sentiment analysis professionals will find it invaluable. What You Will Learn The scope of natural language complexity and how they are processed by machines Clean and wrangle text using tokenization and chunking to help you process data better Tokenize text into sentences and sentences into words Classify text and perform sentiment analysis Implement string matching algorithms and normalization techniques Understand and implement the concepts of information retrieval and text summarization Find out how to implement various NLP tasks in Python In Detail Natural Language Processing is a field of computational linguistics and artificial intelligence that deals with human-computer interaction. It provides a seamless interaction between computers and human beings and gives computers the ability to understand human speech with the help of machine learning. The number of human-computer interaction instances are increasing so it's becoming imperative that computers comprehend all major natural languages. The first NLTK Essentials module is an introduction on how to build systems around NLP, with a focus on how to create a customized tokenizer and parser from scratch. You will learn essential concepts of NLP, be given practical insight into open source tool and libraries available in Python, shown how to analyze social media sites, and be given tools to deal with large scale text. This module also provides a workaround using some of the amazing capabilities of Python libraries such as NLTK, scikit-learn, pandas, and NumPy. The second Python 3 Text Processing with NLTK 3 Cookbook module teaches you the essential techniques of text and language processing with simple, straightforward examples. This includes organizing text corpora, creating your own custom corpus, text classification with a focus on sentiment analysis, and distributed text processing methods. The third Mastering Natural Language Processing with Python module will help you become an expert and assist you in creating your own NLP projects using NLTK. You will be guided through model development with machine learning tools, shown how to create training data, and given insight into the best practices for designing and building NLP-based applications using Python. This Learning Path combines some of the best that Packt has to offer in one complete, curated package and is designed to help you quickly learn text processing with Python and NLTK. It includes content from the following Packt products: NTLK essentials by Nitin Hardeniya Python 3 Text Processing with NLTK 3 Cookbook by Jacob Perkins Mastering Natural Language Processing with Python by Deepti Chopra, Nisheeth Joshi, and Iti Mathur Style and approach This comprehensive course creates a smooth learning path that teaches you how to get started with Natural Language Processing using Python and NLTK. You'll learn to create effective NLP and machine learning projects using Python and NLTK.
Publisher: Packt Publishing Ltd
ISBN: 178728784X
Category : Computers
Languages : en
Pages : 687
Book Description
Learn to build expert NLP and machine learning projects using NLTK and other Python libraries About This Book Break text down into its component parts for spelling correction, feature extraction, and phrase transformation Work through NLP concepts with simple and easy-to-follow programming recipes Gain insights into the current and budding research topics of NLP Who This Book Is For If you are an NLP or machine learning enthusiast and an intermediate Python programmer who wants to quickly master NLTK for natural language processing, then this Learning Path will do you a lot of good. Students of linguistics and semantic/sentiment analysis professionals will find it invaluable. What You Will Learn The scope of natural language complexity and how they are processed by machines Clean and wrangle text using tokenization and chunking to help you process data better Tokenize text into sentences and sentences into words Classify text and perform sentiment analysis Implement string matching algorithms and normalization techniques Understand and implement the concepts of information retrieval and text summarization Find out how to implement various NLP tasks in Python In Detail Natural Language Processing is a field of computational linguistics and artificial intelligence that deals with human-computer interaction. It provides a seamless interaction between computers and human beings and gives computers the ability to understand human speech with the help of machine learning. The number of human-computer interaction instances are increasing so it's becoming imperative that computers comprehend all major natural languages. The first NLTK Essentials module is an introduction on how to build systems around NLP, with a focus on how to create a customized tokenizer and parser from scratch. You will learn essential concepts of NLP, be given practical insight into open source tool and libraries available in Python, shown how to analyze social media sites, and be given tools to deal with large scale text. This module also provides a workaround using some of the amazing capabilities of Python libraries such as NLTK, scikit-learn, pandas, and NumPy. The second Python 3 Text Processing with NLTK 3 Cookbook module teaches you the essential techniques of text and language processing with simple, straightforward examples. This includes organizing text corpora, creating your own custom corpus, text classification with a focus on sentiment analysis, and distributed text processing methods. The third Mastering Natural Language Processing with Python module will help you become an expert and assist you in creating your own NLP projects using NLTK. You will be guided through model development with machine learning tools, shown how to create training data, and given insight into the best practices for designing and building NLP-based applications using Python. This Learning Path combines some of the best that Packt has to offer in one complete, curated package and is designed to help you quickly learn text processing with Python and NLTK. It includes content from the following Packt products: NTLK essentials by Nitin Hardeniya Python 3 Text Processing with NLTK 3 Cookbook by Jacob Perkins Mastering Natural Language Processing with Python by Deepti Chopra, Nisheeth Joshi, and Iti Mathur Style and approach This comprehensive course creates a smooth learning path that teaches you how to get started with Natural Language Processing using Python and NLTK. You'll learn to create effective NLP and machine learning projects using Python and NLTK.
Text Processing in Python
Author: David Mertz
Publisher: Addison-Wesley Professional
ISBN: 9780321112545
Category : Computers
Languages : en
Pages : 544
Book Description
bull; Demonstrates how Python is the perfect language for text-processing functions. bull; Provides practical pointers and tips that emphasize efficient, flexible, and maintainable approaches to text-processing challenges. bull; Helps programmers develop solutions for dealing with the increasing amounts of data with which we are all inundated.
Publisher: Addison-Wesley Professional
ISBN: 9780321112545
Category : Computers
Languages : en
Pages : 544
Book Description
bull; Demonstrates how Python is the perfect language for text-processing functions. bull; Provides practical pointers and tips that emphasize efficient, flexible, and maintainable approaches to text-processing challenges. bull; Helps programmers develop solutions for dealing with the increasing amounts of data with which we are all inundated.
Hands-On Natural Language Processing with Python
Author: Rajesh Arumugam
Publisher: Packt Publishing Ltd
ISBN: 1789135915
Category : Computers
Languages : en
Pages : 307
Book Description
Foster your NLP applications with the help of deep learning, NLTK, and TensorFlow Key Features Weave neural networks into linguistic applications across various platforms Perform NLP tasks and train its models using NLTK and TensorFlow Boost your NLP models with strong deep learning architectures such as CNNs and RNNs Book Description Natural language processing (NLP) has found its application in various domains, such as web search, advertisements, and customer services, and with the help of deep learning, we can enhance its performances in these areas. Hands-On Natural Language Processing with Python teaches you how to leverage deep learning models for performing various NLP tasks, along with best practices in dealing with today’s NLP challenges. To begin with, you will understand the core concepts of NLP and deep learning, such as Convolutional Neural Networks (CNNs), recurrent neural networks (RNNs), semantic embedding, Word2vec, and more. You will learn how to perform each and every task of NLP using neural networks, in which you will train and deploy neural networks in your NLP applications. You will get accustomed to using RNNs and CNNs in various application areas, such as text classification and sequence labeling, which are essential in the application of sentiment analysis, customer service chatbots, and anomaly detection. You will be equipped with practical knowledge in order to implement deep learning in your linguistic applications using Python's popular deep learning library, TensorFlow. By the end of this book, you will be well versed in building deep learning-backed NLP applications, along with overcoming NLP challenges with best practices developed by domain experts. What you will learn Implement semantic embedding of words to classify and find entities Convert words to vectors by training in order to perform arithmetic operations Train a deep learning model to detect classification of tweets and news Implement a question-answer model with search and RNN models Train models for various text classification datasets using CNN Implement WaveNet a deep generative model for producing a natural-sounding voice Convert voice-to-text and text-to-voice Train a model to convert speech-to-text using DeepSpeech Who this book is for Hands-on Natural Language Processing with Python is for you if you are a developer, machine learning or an NLP engineer who wants to build a deep learning application that leverages NLP techniques. This comprehensive guide is also useful for deep learning users who want to extend their deep learning skills in building NLP applications. All you need is the basics of machine learning and Python to enjoy the book.
Publisher: Packt Publishing Ltd
ISBN: 1789135915
Category : Computers
Languages : en
Pages : 307
Book Description
Foster your NLP applications with the help of deep learning, NLTK, and TensorFlow Key Features Weave neural networks into linguistic applications across various platforms Perform NLP tasks and train its models using NLTK and TensorFlow Boost your NLP models with strong deep learning architectures such as CNNs and RNNs Book Description Natural language processing (NLP) has found its application in various domains, such as web search, advertisements, and customer services, and with the help of deep learning, we can enhance its performances in these areas. Hands-On Natural Language Processing with Python teaches you how to leverage deep learning models for performing various NLP tasks, along with best practices in dealing with today’s NLP challenges. To begin with, you will understand the core concepts of NLP and deep learning, such as Convolutional Neural Networks (CNNs), recurrent neural networks (RNNs), semantic embedding, Word2vec, and more. You will learn how to perform each and every task of NLP using neural networks, in which you will train and deploy neural networks in your NLP applications. You will get accustomed to using RNNs and CNNs in various application areas, such as text classification and sequence labeling, which are essential in the application of sentiment analysis, customer service chatbots, and anomaly detection. You will be equipped with practical knowledge in order to implement deep learning in your linguistic applications using Python's popular deep learning library, TensorFlow. By the end of this book, you will be well versed in building deep learning-backed NLP applications, along with overcoming NLP challenges with best practices developed by domain experts. What you will learn Implement semantic embedding of words to classify and find entities Convert words to vectors by training in order to perform arithmetic operations Train a deep learning model to detect classification of tweets and news Implement a question-answer model with search and RNN models Train models for various text classification datasets using CNN Implement WaveNet a deep generative model for producing a natural-sounding voice Convert voice-to-text and text-to-voice Train a model to convert speech-to-text using DeepSpeech Who this book is for Hands-on Natural Language Processing with Python is for you if you are a developer, machine learning or an NLP engineer who wants to build a deep learning application that leverages NLP techniques. This comprehensive guide is also useful for deep learning users who want to extend their deep learning skills in building NLP applications. All you need is the basics of machine learning and Python to enjoy the book.
Python Web Scraping Cookbook
Author: Michael Heydt
Publisher: Packt Publishing Ltd
ISBN: 1787286630
Category : Computers
Languages : en
Pages : 356
Book Description
Untangle your web scraping complexities and access web data with ease using Python scripts Key Features Hands-on recipes for advancing your web scraping skills to expert level One-stop solution guide to address complex and challenging web scraping tasks using Python Understand web page structures and collect data from a website with ease Book Description Python Web Scraping Cookbook is a solution-focused book that will teach you techniques to develop high-performance Scrapers, and deal with cookies, hidden form fields, Ajax-based sites and proxies. You'll explore a number of real-world scenarios where every part of the development or product life cycle will be fully covered. You will not only develop the skills to design reliable, high-performing data flows, but also deploy your codebase to Amazon Web Services (AWS). If you are involved in software engineering, product development, or data mining or in building data-driven products, you will find this book useful as each recipe has a clear purpose and objective. Right from extracting data from websites to writing a sophisticated web crawler, the book's independent recipes will be extremely helpful while on the job. This book covers Python libraries, requests, and BeautifulSoup. You will learn about crawling, web spidering, working with AJAX websites, and paginated items. You will also understand to tackle problems such as 403 errors, working with proxy, scraping images, and LXML. By the end of this book, you will be able to scrape websites more efficiently and deploy and operate your scraper in the cloud. What you will learn Use a variety of tools to scrape any website and data, including Scrapy and Selenium Master expression languages, such as XPath and CSS, and regular expressions to extract web data Deal with scraping traps such as hidden form fields, throttling, pagination, and different status codes Build robust scraping pipelines with SQS and RabbitMQ Scrape assets like image media and learn what to do when Scraper fails to run Explore ETL techniques of building a customized crawler, parser, and convert structured and unstructured data from websites Deploy and run your scraper as a service in AWS Elastic Container Service Who this book is for This book is ideal for Python programmers, web administrators, security professionals, and anyone who wants to perform web analytics. Familiarity with Python and basic understanding of web scraping will be useful to make the best of this book.
Publisher: Packt Publishing Ltd
ISBN: 1787286630
Category : Computers
Languages : en
Pages : 356
Book Description
Untangle your web scraping complexities and access web data with ease using Python scripts Key Features Hands-on recipes for advancing your web scraping skills to expert level One-stop solution guide to address complex and challenging web scraping tasks using Python Understand web page structures and collect data from a website with ease Book Description Python Web Scraping Cookbook is a solution-focused book that will teach you techniques to develop high-performance Scrapers, and deal with cookies, hidden form fields, Ajax-based sites and proxies. You'll explore a number of real-world scenarios where every part of the development or product life cycle will be fully covered. You will not only develop the skills to design reliable, high-performing data flows, but also deploy your codebase to Amazon Web Services (AWS). If you are involved in software engineering, product development, or data mining or in building data-driven products, you will find this book useful as each recipe has a clear purpose and objective. Right from extracting data from websites to writing a sophisticated web crawler, the book's independent recipes will be extremely helpful while on the job. This book covers Python libraries, requests, and BeautifulSoup. You will learn about crawling, web spidering, working with AJAX websites, and paginated items. You will also understand to tackle problems such as 403 errors, working with proxy, scraping images, and LXML. By the end of this book, you will be able to scrape websites more efficiently and deploy and operate your scraper in the cloud. What you will learn Use a variety of tools to scrape any website and data, including Scrapy and Selenium Master expression languages, such as XPath and CSS, and regular expressions to extract web data Deal with scraping traps such as hidden form fields, throttling, pagination, and different status codes Build robust scraping pipelines with SQS and RabbitMQ Scrape assets like image media and learn what to do when Scraper fails to run Explore ETL techniques of building a customized crawler, parser, and convert structured and unstructured data from websites Deploy and run your scraper as a service in AWS Elastic Container Service Who this book is for This book is ideal for Python programmers, web administrators, security professionals, and anyone who wants to perform web analytics. Familiarity with Python and basic understanding of web scraping will be useful to make the best of this book.
Natural Language Processing with Java and LingPipe Cookbook
Author: Breck Baldwin
Publisher: Packt Publishing Ltd
ISBN: 1783284684
Category : Computers
Languages : en
Pages : 485
Book Description
This book is for experienced Java developers with NLP needs, whether academics, industrialists, or hobbyists. A basic knowledge of NLP terminology will be beneficial.
Publisher: Packt Publishing Ltd
ISBN: 1783284684
Category : Computers
Languages : en
Pages : 485
Book Description
This book is for experienced Java developers with NLP needs, whether academics, industrialists, or hobbyists. A basic knowledge of NLP terminology will be beneficial.
Natural Language Processing with Python Cookbook
Author: Krishna Bhavsar
Publisher:
ISBN: 9781787289321
Category : Computers
Languages : en
Pages : 316
Book Description
Learn the tricks and tips that will help you design Text Analytics solutionsAbout This Book* Independent recipes that will teach you how to efficiently perform Natural Language Processing in Python* Use dictionaries to create your own named entities using this easy-to-follow guide* Learn how to implement NLTK for various scenarios with the help of example-rich recipes to take you beyond basic Natural Language ProcessingWho This Book Is ForThis book is intended for data scientists, data analysts, and data science professionals who want to upgrade their existing skills to implement advanced text analytics using NLP. Some basic knowledge of Natural Language Processing is recommended.What You Will Learn* Explore corpus management using internal and external corpora* Learn WordNet usage and a couple of simple application assignments using WordNet* Operate on raw text* Learn to perform tokenization, stemming, lemmatization, and spelling corrections, stop words removals, and more* Understand regular expressions for pattern matching* Learn to use and write your own POS taggers and grammars* Learn to evaluate your own trained models* Explore Deep Learning techniques in NLP* Generate Text from Nietzsche's writing using LSTM* Utilize the BABI dataset and LSTM to model episodesIn DetailNatural Language Processing (NLP) is a field of computer science, artificial intelligence, and computational linguistics concerned with the interactions between computers and human (natural) languages; in particular, it's about programming computers to fruitfully process large natural language corpora.This book includes unique recipes that will teach you various aspects of performing Natural Language Processing with NLTK-the leading Python platform for the task. You will come across various recipes during the course, covering (among other topics) natural language understanding, Natural Language Processing, and syntactic analysis. You will learn how to understand language, plan sentences, and work around various ambiguities. You will learn how to efficiently use NLTK and implement text classification, identify parts of speech, tag words, and more. You will also learn how to analyze sentence structures and master lexical analysis, syntactic and semantic analysis, pragmatic analysis, and the application of deep learning techniques.By the end of this book, you will have all the knowledge you need to implement Natural Language Processing with Python.Style and ApproachThis book's rich collection of recipes will come in handy when you are working with Natural Language Processing with Python. Addressing your common and not-so-common pain points, this is a book that you must have on the shelf.
Publisher:
ISBN: 9781787289321
Category : Computers
Languages : en
Pages : 316
Book Description
Learn the tricks and tips that will help you design Text Analytics solutionsAbout This Book* Independent recipes that will teach you how to efficiently perform Natural Language Processing in Python* Use dictionaries to create your own named entities using this easy-to-follow guide* Learn how to implement NLTK for various scenarios with the help of example-rich recipes to take you beyond basic Natural Language ProcessingWho This Book Is ForThis book is intended for data scientists, data analysts, and data science professionals who want to upgrade their existing skills to implement advanced text analytics using NLP. Some basic knowledge of Natural Language Processing is recommended.What You Will Learn* Explore corpus management using internal and external corpora* Learn WordNet usage and a couple of simple application assignments using WordNet* Operate on raw text* Learn to perform tokenization, stemming, lemmatization, and spelling corrections, stop words removals, and more* Understand regular expressions for pattern matching* Learn to use and write your own POS taggers and grammars* Learn to evaluate your own trained models* Explore Deep Learning techniques in NLP* Generate Text from Nietzsche's writing using LSTM* Utilize the BABI dataset and LSTM to model episodesIn DetailNatural Language Processing (NLP) is a field of computer science, artificial intelligence, and computational linguistics concerned with the interactions between computers and human (natural) languages; in particular, it's about programming computers to fruitfully process large natural language corpora.This book includes unique recipes that will teach you various aspects of performing Natural Language Processing with NLTK-the leading Python platform for the task. You will come across various recipes during the course, covering (among other topics) natural language understanding, Natural Language Processing, and syntactic analysis. You will learn how to understand language, plan sentences, and work around various ambiguities. You will learn how to efficiently use NLTK and implement text classification, identify parts of speech, tag words, and more. You will also learn how to analyze sentence structures and master lexical analysis, syntactic and semantic analysis, pragmatic analysis, and the application of deep learning techniques.By the end of this book, you will have all the knowledge you need to implement Natural Language Processing with Python.Style and ApproachThis book's rich collection of recipes will come in handy when you are working with Natural Language Processing with Python. Addressing your common and not-so-common pain points, this is a book that you must have on the shelf.
Python Natural Language Processing
Author: Jalaj Thanaki
Publisher: Packt Publishing Ltd
ISBN: 1787285529
Category : Computers
Languages : en
Pages : 476
Book Description
Leverage the power of machine learning and deep learning to extract information from text data About This Book Implement Machine Learning and Deep Learning techniques for efficient natural language processing Get started with NLTK and implement NLP in your applications with ease Understand and interpret human languages with the power of text analysis via Python Who This Book Is For This book is intended for Python developers who wish to start with natural language processing and want to make their applications smarter by implementing NLP in them. What You Will Learn Focus on Python programming paradigms, which are used to develop NLP applications Understand corpus analysis and different types of data attribute. Learn NLP using Python libraries such as NLTK, Polyglot, SpaCy, Standford CoreNLP and so on Learn about Features Extraction and Feature selection as part of Features Engineering. Explore the advantages of vectorization in Deep Learning. Get a better understanding of the architecture of a rule-based system. Optimize and fine-tune Supervised and Unsupervised Machine Learning algorithms for NLP problems. Identify Deep Learning techniques for Natural Language Processing and Natural Language Generation problems. In Detail This book starts off by laying the foundation for Natural Language Processing and why Python is one of the best options to build an NLP-based expert system with advantages such as Community support, availability of frameworks and so on. Later it gives you a better understanding of available free forms of corpus and different types of dataset. After this, you will know how to choose a dataset for natural language processing applications and find the right NLP techniques to process sentences in datasets and understand their structure. You will also learn how to tokenize different parts of sentences and ways to analyze them. During the course of the book, you will explore the semantic as well as syntactic analysis of text. You will understand how to solve various ambiguities in processing human language and will come across various scenarios while performing text analysis. You will learn the very basics of getting the environment ready for natural language processing, move on to the initial setup, and then quickly understand sentences and language parts. You will learn the power of Machine Learning and Deep Learning to extract information from text data. By the end of the book, you will have a clear understanding of natural language processing and will have worked on multiple examples that implement NLP in the real world. Style and approach This book teaches the readers various aspects of natural language Processing using NLTK. It takes the reader from the basic to advance level in a smooth way.
Publisher: Packt Publishing Ltd
ISBN: 1787285529
Category : Computers
Languages : en
Pages : 476
Book Description
Leverage the power of machine learning and deep learning to extract information from text data About This Book Implement Machine Learning and Deep Learning techniques for efficient natural language processing Get started with NLTK and implement NLP in your applications with ease Understand and interpret human languages with the power of text analysis via Python Who This Book Is For This book is intended for Python developers who wish to start with natural language processing and want to make their applications smarter by implementing NLP in them. What You Will Learn Focus on Python programming paradigms, which are used to develop NLP applications Understand corpus analysis and different types of data attribute. Learn NLP using Python libraries such as NLTK, Polyglot, SpaCy, Standford CoreNLP and so on Learn about Features Extraction and Feature selection as part of Features Engineering. Explore the advantages of vectorization in Deep Learning. Get a better understanding of the architecture of a rule-based system. Optimize and fine-tune Supervised and Unsupervised Machine Learning algorithms for NLP problems. Identify Deep Learning techniques for Natural Language Processing and Natural Language Generation problems. In Detail This book starts off by laying the foundation for Natural Language Processing and why Python is one of the best options to build an NLP-based expert system with advantages such as Community support, availability of frameworks and so on. Later it gives you a better understanding of available free forms of corpus and different types of dataset. After this, you will know how to choose a dataset for natural language processing applications and find the right NLP techniques to process sentences in datasets and understand their structure. You will also learn how to tokenize different parts of sentences and ways to analyze them. During the course of the book, you will explore the semantic as well as syntactic analysis of text. You will understand how to solve various ambiguities in processing human language and will come across various scenarios while performing text analysis. You will learn the very basics of getting the environment ready for natural language processing, move on to the initial setup, and then quickly understand sentences and language parts. You will learn the power of Machine Learning and Deep Learning to extract information from text data. By the end of the book, you will have a clear understanding of natural language processing and will have worked on multiple examples that implement NLP in the real world. Style and approach This book teaches the readers various aspects of natural language Processing using NLTK. It takes the reader from the basic to advance level in a smooth way.