Author: Heinz Fabian
Publisher: Springer Science & Business Media
ISBN: 3642222307
Category : Science
Languages : en
Pages : 257
Book Description
Infrared spectroscopy is a new and innovative technology to study protein folding/misfolding events in the broad arsenal of techniques conventionally used in this field. The progress in understanding protein folding and misfolding is primarily due to the development of biophysical methods which permit to probe conformational changes with high kinetic and structural resolution. The most commonly used approaches rely on rapid mixing methods to initiate the folding event via a sudden change in solvent conditions. Traditionally, techniques such as fluorescence, circular dichroism or visible absorption are applied to probe the process. In contrast to these techniques, infrared spectroscopy came into play only very recently, and the progress made in this field up to date which now permits to probe folding events over the time scale from picoseconds to minutes has not yet been discussed in a book. The aim of this book is to provide an overview of the developments as seen by some of the main contributors to the field. The chapters are not intended to give exhaustive reviews of the literature but, instead to illustrate examples demonstrating the sort of information, which infrared techniques can provide and how this information can be extracted from the experimental data. By discussing the strengths and limitations of the infrared approaches for the investigation of folding and misfolding mechanisms this book helps the reader to evaluate whether a particular system is appropriate for studies by infrared spectroscopy and which specific advantages the techniques offer to solve specific problems.
Protein Folding and Misfolding
Protein Folding, Misfolding and Aggregation
Author: Victor Muñoz
Publisher: Royal Society of Chemistry
ISBN: 0854042571
Category : Science
Languages : en
Pages : 290
Book Description
Protein folding and aggregation is the process by which newly synthesized proteins fold into the specific three-dimensional structures defining their biologically active states. It has always been a major focus of research in biochemistry and has often been seen as the unsolved second part of the genetic code. In the last 10 years we have witnessed a quantum leap in the research in this exciting area. Computational methods have improved to the extent of making possible to simulate the complete folding process of small proteins and the early stages of protein aggregation. Experimental methods h.
Publisher: Royal Society of Chemistry
ISBN: 0854042571
Category : Science
Languages : en
Pages : 290
Book Description
Protein folding and aggregation is the process by which newly synthesized proteins fold into the specific three-dimensional structures defining their biologically active states. It has always been a major focus of research in biochemistry and has often been seen as the unsolved second part of the genetic code. In the last 10 years we have witnessed a quantum leap in the research in this exciting area. Computational methods have improved to the extent of making possible to simulate the complete folding process of small proteins and the early stages of protein aggregation. Experimental methods h.
Protein Misfolding
Author: Rossen Donev
Publisher: Academic Press
ISBN: 0128177500
Category : Science
Languages : en
Pages : 450
Book Description
Protein Misfolding, Volume 118, covers the wide spectrum of diseases and disorders that are attributed to protein misfolding, including degenerative and neurodegenerative, cardiovascular, renal, glaucoma, cancer, cystic fibrosis, Gaucher's disease, and many others. Specific chapters cover Mass spectrometric approaches for profiling protein folding and stability, Biomembranes, a key player in protein misfolding, how Genetic and environmental factors interact to disrupt proteostasis and trigger protein misfolding diseases, Formation of oligomers and large amorphous aggregates by intrinsically disordered proteins, Protein misfolding in ER stress with applications to cardiovascular and renal disease, and much more.
Publisher: Academic Press
ISBN: 0128177500
Category : Science
Languages : en
Pages : 450
Book Description
Protein Misfolding, Volume 118, covers the wide spectrum of diseases and disorders that are attributed to protein misfolding, including degenerative and neurodegenerative, cardiovascular, renal, glaucoma, cancer, cystic fibrosis, Gaucher's disease, and many others. Specific chapters cover Mass spectrometric approaches for profiling protein folding and stability, Biomembranes, a key player in protein misfolding, how Genetic and environmental factors interact to disrupt proteostasis and trigger protein misfolding diseases, Formation of oligomers and large amorphous aggregates by intrinsically disordered proteins, Protein misfolding in ER stress with applications to cardiovascular and renal disease, and much more.
Protein Folding, Misfolding, and Disease
Author: Andrew F Hill
Publisher: Springer
ISBN: 9781617791680
Category :
Languages : en
Pages : 260
Book Description
Publisher: Springer
ISBN: 9781617791680
Category :
Languages : en
Pages : 260
Book Description
Protein Misfolding Diseases
Author: Marina Ramirez-Alvarado
Publisher: John Wiley & Sons
ISBN: 1118031814
Category : Science
Languages : en
Pages : 1311
Book Description
An increasingly aging population will add to the number of individuals suffering from amyloid. Protein Misfolding Diseases provides a systematic overview of the current and emerging therapies for these types of protein misfolding diseases, including Alzheimer's, Parkinson's, and Mad Cow. The book emphasizes therapeutics in an amyloid disease context to help students, faculty, scientific researchers, and doctors working with protein misfolding diseases bridge the gap between basic science and pharmaceutical applications to protein misfolding disease.
Publisher: John Wiley & Sons
ISBN: 1118031814
Category : Science
Languages : en
Pages : 1311
Book Description
An increasingly aging population will add to the number of individuals suffering from amyloid. Protein Misfolding Diseases provides a systematic overview of the current and emerging therapies for these types of protein misfolding diseases, including Alzheimer's, Parkinson's, and Mad Cow. The book emphasizes therapeutics in an amyloid disease context to help students, faculty, scientific researchers, and doctors working with protein misfolding diseases bridge the gap between basic science and pharmaceutical applications to protein misfolding disease.
Physical Biology
Author: Ahmed H. Zewail
Publisher: World Scientific
ISBN: 1848162006
Category : Science
Languages : en
Pages : 582
Book Description
Addresses significant problems in physical biology and adjacent disciplines. This volume provides a perspective on the methods and concepts at the heart of chemical and biological behavior, covering the topics of visualization; theory and computation for complexity; and macromolecular function, protein folding, and protein misfolding
Publisher: World Scientific
ISBN: 1848162006
Category : Science
Languages : en
Pages : 582
Book Description
Addresses significant problems in physical biology and adjacent disciplines. This volume provides a perspective on the methods and concepts at the heart of chemical and biological behavior, covering the topics of visualization; theory and computation for complexity; and macromolecular function, protein folding, and protein misfolding
Mechanisms of Protein Folding
Author: Roger H. Pain
Publisher: Oxford University Press, USA
ISBN: 9780199637881
Category : Science
Languages : en
Pages : 433
Book Description
Since the publication of the first edition of mechanisms of protein folding in 1994, significant advances in both the technical and conceptual understanding of protein folding. This new edition has been brought up to date in content, context, and authorship and will make the subject accessibleto a wide range of scientists. The emphasis on experimental approaches has benn maintained from the first edition but this time within the explicit context of simulations and energy surfaces. There is an introductory chapter explaining the 'new' model of protein folding, which takes into account theheterogeneity of the starting state. Advances in interpreting observed kinetic data and the development of technology to observe fast folding reactions and characterize intermediate structures have accompanied this new view and are covered in detail. The term 'molten globule'is often usedincorrectly but here the significance of the term is carefully described at different satges of folding. The concept of the transition state, including the complementary approaches of molecular dynamics and protein engineering, is also discussed in detail. In vitro studies provide the molecularbasis for the thermodynamic and kinetic energy minimization of the in vivo processes of protein folding and two of the potentially rate determining reactions are disulphide bond formation and proline isomerization. It has also become increasingly apparent that chaperone proteins play a vital role inprotein folding and other reactions of proteins involoving major conformational change and the molecular details of these processes are discussed in detail in chapter 14. The final chapter describes the centreal importance of protein folding and unfolding reactions in disease and gives claerdefinition of the term 'misfolding'. Studying protein folding in vivo is full of problems and to show how these problems can be overcome in practice, three case studies of three very different types of protein have been included: the small globular protein apomyoglobin; the fibrous protein collagen;and the membrane protein haemagglutinin.
Publisher: Oxford University Press, USA
ISBN: 9780199637881
Category : Science
Languages : en
Pages : 433
Book Description
Since the publication of the first edition of mechanisms of protein folding in 1994, significant advances in both the technical and conceptual understanding of protein folding. This new edition has been brought up to date in content, context, and authorship and will make the subject accessibleto a wide range of scientists. The emphasis on experimental approaches has benn maintained from the first edition but this time within the explicit context of simulations and energy surfaces. There is an introductory chapter explaining the 'new' model of protein folding, which takes into account theheterogeneity of the starting state. Advances in interpreting observed kinetic data and the development of technology to observe fast folding reactions and characterize intermediate structures have accompanied this new view and are covered in detail. The term 'molten globule'is often usedincorrectly but here the significance of the term is carefully described at different satges of folding. The concept of the transition state, including the complementary approaches of molecular dynamics and protein engineering, is also discussed in detail. In vitro studies provide the molecularbasis for the thermodynamic and kinetic energy minimization of the in vivo processes of protein folding and two of the potentially rate determining reactions are disulphide bond formation and proline isomerization. It has also become increasingly apparent that chaperone proteins play a vital role inprotein folding and other reactions of proteins involoving major conformational change and the molecular details of these processes are discussed in detail in chapter 14. The final chapter describes the centreal importance of protein folding and unfolding reactions in disease and gives claerdefinition of the term 'misfolding'. Studying protein folding in vivo is full of problems and to show how these problems can be overcome in practice, three case studies of three very different types of protein have been included: the small globular protein apomyoglobin; the fibrous protein collagen;and the membrane protein haemagglutinin.
Protein Folding and Metal Ions
Author: Cláudio M. Gomes
Publisher: CRC Press
ISBN: 1439809658
Category : Medical
Languages : en
Pages : 302
Book Description
The role of metal ions in protein folding and structure is a critical topic to a range of scientists in numerous fields, particularly those working in structural biology and bioinorganic chemistry, those studying protein folding and disease, and those involved in the molecular and cellular aspects of metals in biological systems. Protein Folding an
Publisher: CRC Press
ISBN: 1439809658
Category : Medical
Languages : en
Pages : 302
Book Description
The role of metal ions in protein folding and structure is a critical topic to a range of scientists in numerous fields, particularly those working in structural biology and bioinorganic chemistry, those studying protein folding and disease, and those involved in the molecular and cellular aspects of metals in biological systems. Protein Folding an
Molecular Targets in Protein Misfolding and Neurodegenerative Disease
Author: Pierfausto Seneci
Publisher: Academic Press
ISBN: 0128004991
Category : Science
Languages : en
Pages : 314
Book Description
Aimed at "drug discoverers" – i.e. any scientist who is interested in neurodegenerative diseases in general, and in finding disease-modifying treatments in particular – the first edition of Molecular Targets in Protein Misfolding and Neurodegenerative Disease will contain both a detailed, discipline-specific coverage (paragraphs on medicinal chemistry, on clinical and preclinical characterization of compounds in development, on target identification and validation, on genetic factors influencing a pathology, etc.) and a drug discovery-oriented, overall evaluation of each target (validation, druggability, existing leads, etc.). Together these will satisfy the needs of various audiences, including in vitro biologists, pharmacologists, medicinal chemists, etc. - Written to provide a comprehensive coverage of disease-modifying mechanisms and compounds against neurodegenerative diseases - Provides a "drug discovery application oriented perspective, evaluating targets and candidates for their overall therapeutic potential - Provides discipline-specific chapters (medicinal chemistry, target validation, preclinical and clinical development - Provides an overview on a number of molecular mechanisms (e.g. phosphorylation, chaperon refolding, ubiquitination, autophagy, microtubule transportation, protease cleavage, etc.) with relevance for any disease area - Contains a more thorough description of the therapeutic relevance of ~10 specific molecular targets
Publisher: Academic Press
ISBN: 0128004991
Category : Science
Languages : en
Pages : 314
Book Description
Aimed at "drug discoverers" – i.e. any scientist who is interested in neurodegenerative diseases in general, and in finding disease-modifying treatments in particular – the first edition of Molecular Targets in Protein Misfolding and Neurodegenerative Disease will contain both a detailed, discipline-specific coverage (paragraphs on medicinal chemistry, on clinical and preclinical characterization of compounds in development, on target identification and validation, on genetic factors influencing a pathology, etc.) and a drug discovery-oriented, overall evaluation of each target (validation, druggability, existing leads, etc.). Together these will satisfy the needs of various audiences, including in vitro biologists, pharmacologists, medicinal chemists, etc. - Written to provide a comprehensive coverage of disease-modifying mechanisms and compounds against neurodegenerative diseases - Provides a "drug discovery application oriented perspective, evaluating targets and candidates for their overall therapeutic potential - Provides discipline-specific chapters (medicinal chemistry, target validation, preclinical and clinical development - Provides an overview on a number of molecular mechanisms (e.g. phosphorylation, chaperon refolding, ubiquitination, autophagy, microtubule transportation, protease cleavage, etc.) with relevance for any disease area - Contains a more thorough description of the therapeutic relevance of ~10 specific molecular targets
Tau oligomers
Author: Jesus Avila
Publisher: Frontiers E-books
ISBN: 288919261X
Category : Medicine (General)
Languages : en
Pages : 114
Book Description
Neurofibrillary tangles (NFTs) composed of intracellular aggregates of tau protein are a key neuropathological feature of Alzheimer’s Disease (AD) and other neurodegenerative diseases, collectively termed tauopathies. The abundance of NFTs has been reported to correlate positively with the severity of cognitive impairment in AD. However, accumulating evidences derived from studies of experimental models have identified that NFTs themselves may not be neurotoxic. Now, many of tau researchers are seeking a “toxic” form of tau protein. Moreover, it was suggested that a “toxic” tau was capable to seed aggregation of native tau protein and to propagate in a prion-like manner. However, the exact neurotoxic tau species remain unclear. Because mature tangles seem to be non-toxic component, “tau oligomers” as the candidate of “toxic” tau have been investigated for more than one decade. In this topic, we will discuss our consensus of “tau oligomers” because the term of “tau oligomers” [e.g. dimer (disulfide bond-dependent or independent), multimer (more than dimer), granular (definition by EM or AFM) and maybe small filamentous aggregates] has been used by each researchers definition. From a biochemical point of view, tau protein has several unique characteristics such as natively unfolded conformation, thermo-stability, acid-stability, and capability of post-translational modifications. Although tau protein research has been continued for a long time, we are still missing the mechanisms of NFT formation. It is unclear how the conversion is occurred from natively unfolded protein to abnormally mis-folded protein. It remains unknown how tau protein can be formed filaments [e.g. paired helical filament (PHF), straight filament and twisted filament] in cells albeit in vitro studies confirmed tau self-assembly by several inducing factors. Researchers are still debating whether tau oligomerization is primary event rather than tau phosphorylation in the tau pathogenesis. Inhibition of either tau phosphorylation or aggregation has been investigated for the prevention of tauopathies, however, it will make an irrelevant result if we don’t know an exact target of neurotoxicity. It is a time to have a consensus of definition, terminology and methodology for the identification of “tau oligomers”.
Publisher: Frontiers E-books
ISBN: 288919261X
Category : Medicine (General)
Languages : en
Pages : 114
Book Description
Neurofibrillary tangles (NFTs) composed of intracellular aggregates of tau protein are a key neuropathological feature of Alzheimer’s Disease (AD) and other neurodegenerative diseases, collectively termed tauopathies. The abundance of NFTs has been reported to correlate positively with the severity of cognitive impairment in AD. However, accumulating evidences derived from studies of experimental models have identified that NFTs themselves may not be neurotoxic. Now, many of tau researchers are seeking a “toxic” form of tau protein. Moreover, it was suggested that a “toxic” tau was capable to seed aggregation of native tau protein and to propagate in a prion-like manner. However, the exact neurotoxic tau species remain unclear. Because mature tangles seem to be non-toxic component, “tau oligomers” as the candidate of “toxic” tau have been investigated for more than one decade. In this topic, we will discuss our consensus of “tau oligomers” because the term of “tau oligomers” [e.g. dimer (disulfide bond-dependent or independent), multimer (more than dimer), granular (definition by EM or AFM) and maybe small filamentous aggregates] has been used by each researchers definition. From a biochemical point of view, tau protein has several unique characteristics such as natively unfolded conformation, thermo-stability, acid-stability, and capability of post-translational modifications. Although tau protein research has been continued for a long time, we are still missing the mechanisms of NFT formation. It is unclear how the conversion is occurred from natively unfolded protein to abnormally mis-folded protein. It remains unknown how tau protein can be formed filaments [e.g. paired helical filament (PHF), straight filament and twisted filament] in cells albeit in vitro studies confirmed tau self-assembly by several inducing factors. Researchers are still debating whether tau oligomerization is primary event rather than tau phosphorylation in the tau pathogenesis. Inhibition of either tau phosphorylation or aggregation has been investigated for the prevention of tauopathies, however, it will make an irrelevant result if we don’t know an exact target of neurotoxicity. It is a time to have a consensus of definition, terminology and methodology for the identification of “tau oligomers”.