Author: Axel Mogk
Publisher: Frontiers Media SA
ISBN: 2889741931
Category : Science
Languages : en
Pages : 334
Book Description
The Cover Image for This Research Topic is Used With Permission of the Authors and Publishers of the Following Article: Winkler J, Seybert A, König L, Pruggnaller S, Haselmann U, Sourjik V, Weiss M, Frangakis AS, Mogk A, Bukau B.EMBO J. 2010 Mar 3;29(5):910-23. doi: 10.1038/emboj.2009.412. Epub 2010 Jan 21
Functions and Mechanisms of Bacterial Protein Homeostasis and Stress Responses
Author: Axel Mogk
Publisher: Frontiers Media SA
ISBN: 2889741931
Category : Science
Languages : en
Pages : 334
Book Description
The Cover Image for This Research Topic is Used With Permission of the Authors and Publishers of the Following Article: Winkler J, Seybert A, König L, Pruggnaller S, Haselmann U, Sourjik V, Weiss M, Frangakis AS, Mogk A, Bukau B.EMBO J. 2010 Mar 3;29(5):910-23. doi: 10.1038/emboj.2009.412. Epub 2010 Jan 21
Publisher: Frontiers Media SA
ISBN: 2889741931
Category : Science
Languages : en
Pages : 334
Book Description
The Cover Image for This Research Topic is Used With Permission of the Authors and Publishers of the Following Article: Winkler J, Seybert A, König L, Pruggnaller S, Haselmann U, Sourjik V, Weiss M, Frangakis AS, Mogk A, Bukau B.EMBO J. 2010 Mar 3;29(5):910-23. doi: 10.1038/emboj.2009.412. Epub 2010 Jan 21
Bacterial Persistence
Author: Jan Michiels
Publisher: Humana
ISBN: 9781493928538
Category : Medical
Languages : en
Pages : 0
Book Description
This volume presents a comprehensive collection of methods that have been instrumental to the current understanding of bacterial persisters. Chapters in the book cover topics ranging from general methods for measuring persister levels in Escherichia coli cultures, protocols for the determination of the persister subpopulation in Candida albicans, quantitative measurements of Type I and Type II persisters using ScanLag, to in vitro and in vivo models for the study of the intracellular activity of antibiotics. Written in the highly successful Methods in Molecular Biology series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls. Authoritative and cutting-edge, Bacterial Persistence: Methods and Protocols brings together the most respected researchers in bacterial persistence whose studies will remain vital to understanding this field for many years to come.
Publisher: Humana
ISBN: 9781493928538
Category : Medical
Languages : en
Pages : 0
Book Description
This volume presents a comprehensive collection of methods that have been instrumental to the current understanding of bacterial persisters. Chapters in the book cover topics ranging from general methods for measuring persister levels in Escherichia coli cultures, protocols for the determination of the persister subpopulation in Candida albicans, quantitative measurements of Type I and Type II persisters using ScanLag, to in vitro and in vivo models for the study of the intracellular activity of antibiotics. Written in the highly successful Methods in Molecular Biology series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls. Authoritative and cutting-edge, Bacterial Persistence: Methods and Protocols brings together the most respected researchers in bacterial persistence whose studies will remain vital to understanding this field for many years to come.
Protein Aggregation in Bacteria
Author: Silvia Maria Doglia
Publisher: John Wiley & Sons
ISBN: 1118855035
Category : Science
Languages : en
Pages : 300
Book Description
Focuses on the aggregation of recombinant proteins in bacterial cells in the form of inclusion bodies—and on their use in biotechnological and medical applications The first book devoted specifically to the topic of aggregation in bacteria, Protein Aggregation in Bacteria: Functional and Structural Properties of Inclusion Bodies in Bacterial Cells provides a large overview of protein folding and aggregation, including cell biology and methodological aspects. It summarizes, for the first time in one book, ideas and technical approaches that pave the way for a direct use of inclusion bodies in biotechnological and medical applications. Protein Aggregation in Bacteria covers: Molecular and cellular mechanisms of protein folding, aggregation, and disaggregation in bacteria Physiological importance and consequences of aggregation for the bacterial cell Factors inherent to the protein sequence responsible for aggregation and evolutionary mechanisms to keep proteins soluble Structural properties of proteins expressed as soluble aggregates and as inclusion bodies within bacterial cells both from a methodological point of view and with regard to their similarity with amyloids Control of the structural and functional properties of aggregated proteins and use thereof in biotechnology and medicine Protein Aggregation in Bacteria is ideal for researchers in protein science, biochemistry, bioengineering, biophysics, microbiology, medicine, and biotechnology, particularly if they are related with the production of recombinant proteins and pharmaceutical science.
Publisher: John Wiley & Sons
ISBN: 1118855035
Category : Science
Languages : en
Pages : 300
Book Description
Focuses on the aggregation of recombinant proteins in bacterial cells in the form of inclusion bodies—and on their use in biotechnological and medical applications The first book devoted specifically to the topic of aggregation in bacteria, Protein Aggregation in Bacteria: Functional and Structural Properties of Inclusion Bodies in Bacterial Cells provides a large overview of protein folding and aggregation, including cell biology and methodological aspects. It summarizes, for the first time in one book, ideas and technical approaches that pave the way for a direct use of inclusion bodies in biotechnological and medical applications. Protein Aggregation in Bacteria covers: Molecular and cellular mechanisms of protein folding, aggregation, and disaggregation in bacteria Physiological importance and consequences of aggregation for the bacterial cell Factors inherent to the protein sequence responsible for aggregation and evolutionary mechanisms to keep proteins soluble Structural properties of proteins expressed as soluble aggregates and as inclusion bodies within bacterial cells both from a methodological point of view and with regard to their similarity with amyloids Control of the structural and functional properties of aggregated proteins and use thereof in biotechnology and medicine Protein Aggregation in Bacteria is ideal for researchers in protein science, biochemistry, bioengineering, biophysics, microbiology, medicine, and biotechnology, particularly if they are related with the production of recombinant proteins and pharmaceutical science.
Protein Solubility and Aggregation in Bacteria
Author: Salvador Ventura
Publisher: Frontiers Media SA
ISBN: 2889199762
Category : Microbiology
Languages : en
Pages : 129
Book Description
Proteins suffer many conformational changes and interactions through their life, from their synthesis at ribosomes to their controlled degradation. Only folded and soluble proteins are functional. Thus, protein folding and solubility are controlled genetically, transcriptionally, and at the protein sequence level. In addition, a well-conserved cellular machinery assists the folding of polypeptides to avoid misfolding and ensure the attainment of soluble and functional structures. When these redundant protective strategies are overcome, misfolded proteins are recruited into aggregates. Recombinant protein production is an essential tool for the biotechnology industry and also supports expanding areas of basic and biomedical research, including structural genomics and proteomics. Although bacteria still represent a convenient production system, many recombinant polypeptides produced in prokaryotic hosts undergo irregular or incomplete folding processes that usually result in their accumulation as insoluble aggregates, narrowing thus the spectrum of protein-based drugs that are available in the biotechnology market. In fact, the solubility of bacterially produced proteins is of major concern in production processes, and many orthogonal strategies have been exploited to try to increase soluble protein yields. Importantly, contrary to the usual assumption that the bacterial aggregates formed during protein production are totally inactive, the presence of a fraction of molecules in a native-like structure in these assemblies endorse them with a certain degree of biological activity, a property that is allowing the use of bacteria as factories to produce new functional materials and catalysts. The protein embedded in intracellular bacterial deposits might display different conformations, but they are usually enriched in beta-sheet-rich assemblies resembling the amyloid fibrils characteristic of several human neurodegenerative diseases. This makes bacterial cells simple, but biologically relevant model systems to address the mechanisms behind amyloid formation and the cellular impact of protein aggregates. Interestingly, bacteria also exploit the structural principles behind amyloid formation for functional purposes such as adhesion or cytotoxicity. In the present research topic we collect papers addressing all the issues mentioned above from both the experimental and computational point of view.
Publisher: Frontiers Media SA
ISBN: 2889199762
Category : Microbiology
Languages : en
Pages : 129
Book Description
Proteins suffer many conformational changes and interactions through their life, from their synthesis at ribosomes to their controlled degradation. Only folded and soluble proteins are functional. Thus, protein folding and solubility are controlled genetically, transcriptionally, and at the protein sequence level. In addition, a well-conserved cellular machinery assists the folding of polypeptides to avoid misfolding and ensure the attainment of soluble and functional structures. When these redundant protective strategies are overcome, misfolded proteins are recruited into aggregates. Recombinant protein production is an essential tool for the biotechnology industry and also supports expanding areas of basic and biomedical research, including structural genomics and proteomics. Although bacteria still represent a convenient production system, many recombinant polypeptides produced in prokaryotic hosts undergo irregular or incomplete folding processes that usually result in their accumulation as insoluble aggregates, narrowing thus the spectrum of protein-based drugs that are available in the biotechnology market. In fact, the solubility of bacterially produced proteins is of major concern in production processes, and many orthogonal strategies have been exploited to try to increase soluble protein yields. Importantly, contrary to the usual assumption that the bacterial aggregates formed during protein production are totally inactive, the presence of a fraction of molecules in a native-like structure in these assemblies endorse them with a certain degree of biological activity, a property that is allowing the use of bacteria as factories to produce new functional materials and catalysts. The protein embedded in intracellular bacterial deposits might display different conformations, but they are usually enriched in beta-sheet-rich assemblies resembling the amyloid fibrils characteristic of several human neurodegenerative diseases. This makes bacterial cells simple, but biologically relevant model systems to address the mechanisms behind amyloid formation and the cellular impact of protein aggregates. Interestingly, bacteria also exploit the structural principles behind amyloid formation for functional purposes such as adhesion or cytotoxicity. In the present research topic we collect papers addressing all the issues mentioned above from both the experimental and computational point of view.
The Aminoacyl-tRNA Synthetases
Author: Michael Ibba
Publisher: CRC Press
ISBN: 9781587061899
Category : Science
Languages : en
Pages : 0
Book Description
By virtue of their role as catalysts of the aminoacylation reaction, the aminoacyl-tRNA synthetases ensure that the first step of translation is performed quickly and accurately. In this volume of 36 separate chapters, the many facets of this ancient and ubiquitous family are reviewed, including their surprising structural diversity, enzymology, tRNA interaction properties, and curious alternative functions. These chapters illustrate the degree to which the aminoacyl-tRNA synthetases employ a variety of mechanisms to carry out both the standard functions related to the synthesis of aminoacylated tRNA for protein synthesis, as well as the surprising functions associated with amino acid biosynthesis, cytokine function, and even the processivity of DNA replication. Other chapters explore the regulation of their synthesis, their role in disease, and their prospects as targets for antibacterial therapeutics. This monograph will be a valuable resource for all scientists interested in the fundamentals of protein synthesis from both a basic research and clinical perspective, as well as the relation of translational components to the evolution of the genetic code.
Publisher: CRC Press
ISBN: 9781587061899
Category : Science
Languages : en
Pages : 0
Book Description
By virtue of their role as catalysts of the aminoacylation reaction, the aminoacyl-tRNA synthetases ensure that the first step of translation is performed quickly and accurately. In this volume of 36 separate chapters, the many facets of this ancient and ubiquitous family are reviewed, including their surprising structural diversity, enzymology, tRNA interaction properties, and curious alternative functions. These chapters illustrate the degree to which the aminoacyl-tRNA synthetases employ a variety of mechanisms to carry out both the standard functions related to the synthesis of aminoacylated tRNA for protein synthesis, as well as the surprising functions associated with amino acid biosynthesis, cytokine function, and even the processivity of DNA replication. Other chapters explore the regulation of their synthesis, their role in disease, and their prospects as targets for antibacterial therapeutics. This monograph will be a valuable resource for all scientists interested in the fundamentals of protein synthesis from both a basic research and clinical perspective, as well as the relation of translational components to the evolution of the genetic code.
Molecular Biology of the Cell
Author:
Publisher:
ISBN: 9780815332183
Category : Cells
Languages : en
Pages : 0
Book Description
Publisher:
ISBN: 9780815332183
Category : Cells
Languages : en
Pages : 0
Book Description
From Protein Structure to Function with Bioinformatics
Author: Daniel John Rigden
Publisher: Springer Science & Business Media
ISBN: 1402090587
Category : Science
Languages : en
Pages : 330
Book Description
Proteins lie at the heart of almost all biological processes and have an incredibly wide range of activities. Central to the function of all proteins is their ability to adopt, stably or sometimes transiently, structures that allow for interaction with other molecules. An understanding of the structure of a protein can therefore lead us to a much improved picture of its molecular function. This realisation has been a prime motivation of recent Structural Genomics projects, involving large-scale experimental determination of protein structures, often those of proteins about which little is known of function. These initiatives have, in turn, stimulated the massive development of novel methods for prediction of protein function from structure. Since model structures may also take advantage of new function prediction algorithms, the first part of the book deals with the various ways in which protein structures may be predicted or inferred, including specific treatment of membrane and intrinsically disordered proteins. A detailed consideration of current structure-based function prediction methodologies forms the second part of this book, which concludes with two chapters, focusing specifically on case studies, designed to illustrate the real-world application of these methods. With bang up-to-date texts from world experts, and abundant links to publicly available resources, this book will be invaluable to anyone who studies proteins and the endlessly fascinating relationship between their structure and function.
Publisher: Springer Science & Business Media
ISBN: 1402090587
Category : Science
Languages : en
Pages : 330
Book Description
Proteins lie at the heart of almost all biological processes and have an incredibly wide range of activities. Central to the function of all proteins is their ability to adopt, stably or sometimes transiently, structures that allow for interaction with other molecules. An understanding of the structure of a protein can therefore lead us to a much improved picture of its molecular function. This realisation has been a prime motivation of recent Structural Genomics projects, involving large-scale experimental determination of protein structures, often those of proteins about which little is known of function. These initiatives have, in turn, stimulated the massive development of novel methods for prediction of protein function from structure. Since model structures may also take advantage of new function prediction algorithms, the first part of the book deals with the various ways in which protein structures may be predicted or inferred, including specific treatment of membrane and intrinsically disordered proteins. A detailed consideration of current structure-based function prediction methodologies forms the second part of this book, which concludes with two chapters, focusing specifically on case studies, designed to illustrate the real-world application of these methods. With bang up-to-date texts from world experts, and abundant links to publicly available resources, this book will be invaluable to anyone who studies proteins and the endlessly fascinating relationship between their structure and function.
Essentials of Glycobiology
Author: Ajit Varki
Publisher: CSHL Press
ISBN: 9780879696818
Category : Medical
Languages : en
Pages : 694
Book Description
Sugar chains (glycans) are often attached to proteins and lipids and have multiple roles in the organization and function of all organisms. "Essentials of Glycobiology" describes their biogenesis and function and offers a useful gateway to the understanding of glycans.
Publisher: CSHL Press
ISBN: 9780879696818
Category : Medical
Languages : en
Pages : 694
Book Description
Sugar chains (glycans) are often attached to proteins and lipids and have multiple roles in the organization and function of all organisms. "Essentials of Glycobiology" describes their biogenesis and function and offers a useful gateway to the understanding of glycans.
Insoluble Proteins
Author: Elena García-Fruitós
Publisher: Humana Press
ISBN: 9781493922048
Category : Science
Languages : en
Pages : 0
Book Description
With insolubility proving to be one of the most crippling bottlenecks in the protein production and purification process, this volume serves to aid researchers working in the recombinant protein production field by describing a wide number of protocols and examples. Insoluble Proteins: Methods and Protocols includes chapters that describe not only the recombinant protein production in different expression systems but also different purification and characterization methods to finally obtain these difficult-to-obtain proteins. Beginning with protein production methods using both prokaryotic and eukaryotic expression systems, the book continues with purification protocols using insoluble proteins, the characterization of insoluble proteins, as well as a general overview of interesting applications of insoluble proteins. Written in the highly successful Methods in Molecular Biology series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls. Comprehensive and practical, Insoluble Proteins: Methods and Protocols aims to provide the scientific community with detailed and reliable state-of-the-art protocols that are used in order to successfully produce and purify recombinant proteins prone to aggregate.
Publisher: Humana Press
ISBN: 9781493922048
Category : Science
Languages : en
Pages : 0
Book Description
With insolubility proving to be one of the most crippling bottlenecks in the protein production and purification process, this volume serves to aid researchers working in the recombinant protein production field by describing a wide number of protocols and examples. Insoluble Proteins: Methods and Protocols includes chapters that describe not only the recombinant protein production in different expression systems but also different purification and characterization methods to finally obtain these difficult-to-obtain proteins. Beginning with protein production methods using both prokaryotic and eukaryotic expression systems, the book continues with purification protocols using insoluble proteins, the characterization of insoluble proteins, as well as a general overview of interesting applications of insoluble proteins. Written in the highly successful Methods in Molecular Biology series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls. Comprehensive and practical, Insoluble Proteins: Methods and Protocols aims to provide the scientific community with detailed and reliable state-of-the-art protocols that are used in order to successfully produce and purify recombinant proteins prone to aggregate.
Recombinant protein expression in microbial systems
Author: Eduardo A. Ceccarelli
Publisher: Frontiers E-books
ISBN: 2889192946
Category : Biotechnology
Languages : en
Pages : 103
Book Description
With the advent of recombinant DNA technology, expressing heterologous proteins in microorganisms rapidly became the method of choice for their production at laboratory and industrial scale. Bacteria, yeasts and other hosts can be grown to high biomass levels efficiently and inexpensively. Obtaining high yields of recombinant proteins from this material was only feasible thanks to constant research on microbial genetics and physiology that led to novel strains, plasmids and cultivation strategies. Despite the spectacular expansion of the field, there is still much room for progress. Improving the levels of expression and the solubility of a recombinant protein can be quite challenging. Accumulation of the product in the cell can lead to stress responses which affect cell growth. Buildup of insoluble and biologically inactive aggregates (inclusion bodies) lowers the yield of production. This is particularly true for obtaining membrane proteins or high-molecular weight and multi-domain proteins. Also, obtaining eukaryotic proteins in a prokaryotic background (for example, plant or animal proteins in bacteria) results in a product that lack post-translational modifications, often required for functionality. Changing to a eukaryotic host (yeasts or filamentous fungi) may not be a proper solution since the pattern of sugar modifications is different than in higher eukaryotes. Still, many advances in the last couple of decades have provided to researchers a wide variety of strategies to maximize the production of their recombinant protein of choice. Everything starts with the careful selection of the host. Be it bacteria or yeast, a broad list of strains is available for overcoming codon use bias, incorrect disulfide bond formation, protein toxicity and lack of post-translational modifications. Also, a huge catalog of plasmids allows choosing for different fusion partners for improving solubility, protein secretion, chaperone co-expression, antibiotic resistance and promoter strength. Next, controlling culture conditions like temperature, inducer and media composition can bolster recombinant protein production. With this Research Topic, we aim to provide an encyclopedic account of the existing approaches to the expression of recombinant proteins in microorganisms, highlight recent discoveries and analyze the future prospects of this exciting and ever-growing field.
Publisher: Frontiers E-books
ISBN: 2889192946
Category : Biotechnology
Languages : en
Pages : 103
Book Description
With the advent of recombinant DNA technology, expressing heterologous proteins in microorganisms rapidly became the method of choice for their production at laboratory and industrial scale. Bacteria, yeasts and other hosts can be grown to high biomass levels efficiently and inexpensively. Obtaining high yields of recombinant proteins from this material was only feasible thanks to constant research on microbial genetics and physiology that led to novel strains, plasmids and cultivation strategies. Despite the spectacular expansion of the field, there is still much room for progress. Improving the levels of expression and the solubility of a recombinant protein can be quite challenging. Accumulation of the product in the cell can lead to stress responses which affect cell growth. Buildup of insoluble and biologically inactive aggregates (inclusion bodies) lowers the yield of production. This is particularly true for obtaining membrane proteins or high-molecular weight and multi-domain proteins. Also, obtaining eukaryotic proteins in a prokaryotic background (for example, plant or animal proteins in bacteria) results in a product that lack post-translational modifications, often required for functionality. Changing to a eukaryotic host (yeasts or filamentous fungi) may not be a proper solution since the pattern of sugar modifications is different than in higher eukaryotes. Still, many advances in the last couple of decades have provided to researchers a wide variety of strategies to maximize the production of their recombinant protein of choice. Everything starts with the careful selection of the host. Be it bacteria or yeast, a broad list of strains is available for overcoming codon use bias, incorrect disulfide bond formation, protein toxicity and lack of post-translational modifications. Also, a huge catalog of plasmids allows choosing for different fusion partners for improving solubility, protein secretion, chaperone co-expression, antibiotic resistance and promoter strength. Next, controlling culture conditions like temperature, inducer and media composition can bolster recombinant protein production. With this Research Topic, we aim to provide an encyclopedic account of the existing approaches to the expression of recombinant proteins in microorganisms, highlight recent discoveries and analyze the future prospects of this exciting and ever-growing field.