Projection and Quasi-Compressibility Methods for Solving the Incompressible Navier-Stokes Equations

Projection and Quasi-Compressibility Methods for Solving the Incompressible Navier-Stokes Equations PDF Author: Andreas Prohl
Publisher:
ISBN: 9783663111726
Category :
Languages : en
Pages : 312

Get Book Here

Book Description

Projection and Quasi-Compressibility Methods for Solving the Incompressible Navier-Stokes Equations

Projection and Quasi-Compressibility Methods for Solving the Incompressible Navier-Stokes Equations PDF Author: Andreas Prohl
Publisher:
ISBN: 9783663111726
Category :
Languages : en
Pages : 312

Get Book Here

Book Description


Projection and Quasi-Compressibility Methods for Solving the Incompressible Navier-Stokes Equations

Projection and Quasi-Compressibility Methods for Solving the Incompressible Navier-Stokes Equations PDF Author:
Publisher: Springer Science & Business Media
ISBN: 3663111717
Category : Technology & Engineering
Languages : en
Pages : 302

Get Book Here

Book Description
Projection methods had been introduced in the late sixties by A. Chorin and R. Teman to decouple the computation of velocity and pressure within the time-stepping for solving the nonstationary Navier-Stokes equations. Despite the good performance of projection methods in practical computations, their success remained somewhat mysterious as the operator splitting implicitly introduces a nonphysical boundary condition for the pressure. The objectives of this monograph are twofold. First, a rigorous error analysis is presented for existing projection methods by means of relating them to so-called quasi-compressibility methods (e.g. penalty method, pressure stabilzation method, etc.). This approach highlights the intrinsic error mechanisms of these schemes and explains the reasons for their limitations. Then, in the second part, more sophisticated new schemes are constructed and analyzed which are exempted from most of the deficiencies of the classical projection and quasi-compressibility methods. '... this book should be mandatory reading for applied mathematicians specializing in computational fluid dynamics.' J.-L.Guermond. Mathematical Reviews, Ann Arbor

Handbook of Numerical Analysis

Handbook of Numerical Analysis PDF Author: Philippe G. Ciarlet
Publisher: Gulf Professional Publishing
ISBN: 9780444512246
Category : Numerical analysis
Languages : en
Pages : 1187

Get Book Here

Book Description
Includes following subjects: Solution of equations in Rn, Finite difference methods, Finite element methods, Techniques of scientific computing, Optimization theory and systems science, Numerical methods for fluids, Numerical methods for solids, Specific applications

Finite Element Methods for Incompressible Flow Problems

Finite Element Methods for Incompressible Flow Problems PDF Author: Volker John
Publisher: Springer
ISBN: 3319457500
Category : Mathematics
Languages : en
Pages : 816

Get Book Here

Book Description
This book explores finite element methods for incompressible flow problems: Stokes equations, stationary Navier-Stokes equations and time-dependent Navier-Stokes equations. It focuses on numerical analysis, but also discusses the practical use of these methods and includes numerical illustrations. It also provides a comprehensive overview of analytical results for turbulence models. The proofs are presented step by step, allowing readers to more easily understand the analytical techniques.

Efficient Solvers for Incompressible Flow Problems

Efficient Solvers for Incompressible Flow Problems PDF Author: Stefan Turek
Publisher: Springer Science & Business Media
ISBN: 3642583938
Category : Mathematics
Languages : en
Pages : 369

Get Book Here

Book Description
A discussion of recent numerical and algorithmic tools for the solution of certain flow problems arising in CFD, which are governed by the incompressible Navier-Stokes equations. The book contains the latest results for the numerical solution of (complex) flow problems on modern computer platforms, with particular emphasis on the solution process of the resulting high dimensional discrete systems of equations which is often neglected in other works. Together with the accompanying CD ROM containing the complete FEATFLOW 1.1 software and parts of the "Virtual Album of Fluid Motion", readers are able to perform their own numerical simulations and will find numerous suggestions for improving their own computational simulations.

Navier-Stokes Equations

Navier-Stokes Equations PDF Author: Rodolfo Salvi
Publisher: CRC Press
ISBN: 9780582356436
Category : Mathematics
Languages : en
Pages : 364

Get Book Here

Book Description
This volume contains the texts of selected lectures delivered at the "International Conference on Navier-Stokes Equations: Theory and Numerical Methods," held during 1997 in Varenna, Lecco (Italy). In recent years, the interest in mathematical theory of phenomena in fluid mechanics has increased, particularly from the point of view of numerical analysis. The book surveys recent developments in Navier-Stokes equations and their applications, and contains contributions from leading experts in the field. It will be a valuable resource for all researchers in fluid dynamics.

Scientific Computing in Chemical Engineering II

Scientific Computing in Chemical Engineering II PDF Author: Frerich Keil
Publisher: Springer Science & Business Media
ISBN: 3642601855
Category : Science
Languages : en
Pages : 457

Get Book Here

Book Description
The application of modern methods in numerical mathematics on problems in chemical engineering is essential for designing, analyzing and running chemical processes and even entire plants. Scientific Computing in Chemical Engineering II gives the state of the art from the point of view of numerical mathematicians as well as that of engineers. The present volume as part of a two-volume edition covers topics such as the simulation of reactive flows, reaction engineering, reaction diffusion problems, and molecular properties. The volume is aimed at scientists, practitioners and graduate students in chemical engineering, industrial engineering and numerical mathematics.

Finite Element Methods for Computational Fluid Dynamics

Finite Element Methods for Computational Fluid Dynamics PDF Author: Dmitri Kuzmin
Publisher: SIAM
ISBN: 1611973600
Category : Science
Languages : en
Pages : 321

Get Book Here

Book Description
This informal introduction to computational fluid dynamics and practical guide to numerical simulation of transport phenomena covers the derivation of the governing equations, construction of finite element approximations, and qualitative properties of numerical solutions, among other topics. To make the book accessible to readers with diverse interests and backgrounds, the authors begin at a basic level and advance to numerical tools for increasingly difficult flow problems, emphasizing practical implementation rather than mathematical theory.?Finite Element Methods for Computational Fluid Dynamics: A Practical Guide?explains the basics of the finite element method (FEM) in the context of simple model problems, illustrated by numerical examples. It comprehensively reviews stabilization techniques for convection-dominated transport problems, introducing the reader to streamline diffusion methods, Petrov?Galerkin approximations, Taylor?Galerkin schemes, flux-corrected transport algorithms, and other nonlinear high-resolution schemes, and covers Petrov?Galerkin stabilization, classical projection schemes, Schur complement solvers, and the implementation of the k-epsilon turbulence model in its presentation of the FEM for incompressible flow problem. The book also describes the open-source finite element library ELMER, which is recommended as a software development kit for advanced applications in an online component.?

Multiscale Modeling and Analysis for Materials Simulation

Multiscale Modeling and Analysis for Materials Simulation PDF Author: Weizhu Bao
Publisher: World Scientific
ISBN: 9814360899
Category : Mathematics
Languages : en
Pages : 285

Get Book Here

Book Description
The Institute for Mathematical Sciences at the National University of Singapore hosted a two-month research program on "Mathematical Theory and Numerical Methods for Computational Materials Simulation and Design" from 1 July to 31 August 2009. As an important part of the program, tutorials and special lectures were given by leading experts in the fields for participating graduate students and junior researchers. This invaluable volume collects four expanded lecture notes with self-contained tutorials. They cover a number of aspects on multiscale modeling, analysis and simulations for problems arising from materials science including some critical components in computational prediction of materials properties such as the multiscale properties of complex materials, properties of defects, interfaces and material microstructures under different conditions, critical issues in developing efficient numerical methods and analytic frameworks for complex and multiscale materials models. This volume serves to inspire graduate students and researchers who choose to embark into original research work in these fields.

Numerical Models for Differential Problems

Numerical Models for Differential Problems PDF Author: Alfio Quarteroni
Publisher: Springer
ISBN: 3319493167
Category : Mathematics
Languages : en
Pages : 701

Get Book Here

Book Description
In this text, we introduce the basic concepts for the numerical modeling of partial differential equations. We consider the classical elliptic, parabolic and hyperbolic linear equations, but also the diffusion, transport, and Navier-Stokes equations, as well as equations representing conservation laws, saddle-point problems and optimal control problems. Furthermore, we provide numerous physical examples which underline such equations. We then analyze numerical solution methods based on finite elements, finite differences, finite volumes, spectral methods and domain decomposition methods, and reduced basis methods. In particular, we discuss the algorithmic and computer implementation aspects and provide a number of easy-to-use programs. The text does not require any previous advanced mathematical knowledge of partial differential equations: the absolutely essential concepts are reported in a preliminary chapter. It is therefore suitable for students of bachelor and master courses in scientific disciplines, and recommendable to those researchers in the academic and extra-academic domain who want to approach this interesting branch of applied mathematics.