Author: Catherine D. LeTourneau
Publisher:
ISBN: 9780821582336
Category : Mathematics
Languages : en
Pages : 0
Book Description
Progress in Mathematics
Author: Catherine D. LeTourneau
Publisher:
ISBN: 9780821582336
Category : Mathematics
Languages : en
Pages : 0
Book Description
Publisher:
ISBN: 9780821582336
Category : Mathematics
Languages : en
Pages : 0
Book Description
New Progress in Mathematics
Author:
Publisher:
ISBN:
Category : Mathematics
Languages : en
Pages :
Book Description
Publisher:
ISBN:
Category : Mathematics
Languages : en
Pages :
Book Description
Progress in Mathematics
Author: R. V. Gamkrelidze
Publisher:
ISBN:
Category : Mathematical analysis
Languages : en
Pages : 128
Book Description
Publisher:
ISBN:
Category : Mathematical analysis
Languages : en
Pages : 128
Book Description
Transformational Change Efforts: Student Engagement in Mathematics through an Institutional Network for Active Learning
Author: Wendy M. Smith
Publisher: American Mathematical Soc.
ISBN: 1470463776
Category : Education
Languages : en
Pages : 348
Book Description
The purpose of this handbook is to help launch institutional transformations in mathematics departments to improve student success. We report findings from the Student Engagement in Mathematics through an Institutional Network for Active Learning (SEMINAL) study. SEMINAL's purpose is to help change agents, those looking to (or currently attempting to) enact change within mathematics departments and beyond—trying to reform the instruction of their lower division mathematics courses in order to promote high achievement for all students. SEMINAL specifically studies the change mechanisms that allow postsecondary institutions to incorporate and sustain active learning in Precalculus to Calculus 2 learning environments. Out of the approximately 2.5 million students enrolled in collegiate mathematics courses each year, over 90% are enrolled in Precalculus to Calculus 2 courses. Forty-four percent of mathematics departments think active learning mathematics strategies are important for Precalculus to Calculus 2 courses, but only 15 percnt state that they are very successful at implementing them. Therefore, insights into the following research question will help with institutional transformations: What conditions, strategies, interventions and actions at the departmental and classroom levels contribute to the initiation, implementation, and institutional sustainability of active learning in the undergraduate calculus sequence (Precalculus to Calculus 2) across varied institutions?
Publisher: American Mathematical Soc.
ISBN: 1470463776
Category : Education
Languages : en
Pages : 348
Book Description
The purpose of this handbook is to help launch institutional transformations in mathematics departments to improve student success. We report findings from the Student Engagement in Mathematics through an Institutional Network for Active Learning (SEMINAL) study. SEMINAL's purpose is to help change agents, those looking to (or currently attempting to) enact change within mathematics departments and beyond—trying to reform the instruction of their lower division mathematics courses in order to promote high achievement for all students. SEMINAL specifically studies the change mechanisms that allow postsecondary institutions to incorporate and sustain active learning in Precalculus to Calculus 2 learning environments. Out of the approximately 2.5 million students enrolled in collegiate mathematics courses each year, over 90% are enrolled in Precalculus to Calculus 2 courses. Forty-four percent of mathematics departments think active learning mathematics strategies are important for Precalculus to Calculus 2 courses, but only 15 percnt state that they are very successful at implementing them. Therefore, insights into the following research question will help with institutional transformations: What conditions, strategies, interventions and actions at the departmental and classroom levels contribute to the initiation, implementation, and institutional sustainability of active learning in the undergraduate calculus sequence (Precalculus to Calculus 2) across varied institutions?
Cubic Forms and the Circle Method
Author: Tim Browning
Publisher: Springer Nature
ISBN: 3030868729
Category : Mathematics
Languages : en
Pages : 175
Book Description
The Hardy–Littlewood circle method was invented over a century ago to study integer solutions to special Diophantine equations, but it has since proven to be one of the most successful all-purpose tools available to number theorists. Not only is it capable of handling remarkably general systems of polynomial equations defined over arbitrary global fields, but it can also shed light on the space of rational curves that lie on algebraic varieties. This book, in which the arithmetic of cubic polynomials takes centre stage, is aimed at bringing beginning graduate students into contact with some of the many facets of the circle method, both classical and modern. This monograph is the winner of the 2021 Ferran Sunyer i Balaguer Prize, a prestigious award for books of expository nature presenting the latest developments in an active area of research in mathematics.
Publisher: Springer Nature
ISBN: 3030868729
Category : Mathematics
Languages : en
Pages : 175
Book Description
The Hardy–Littlewood circle method was invented over a century ago to study integer solutions to special Diophantine equations, but it has since proven to be one of the most successful all-purpose tools available to number theorists. Not only is it capable of handling remarkably general systems of polynomial equations defined over arbitrary global fields, but it can also shed light on the space of rational curves that lie on algebraic varieties. This book, in which the arithmetic of cubic polynomials takes centre stage, is aimed at bringing beginning graduate students into contact with some of the many facets of the circle method, both classical and modern. This monograph is the winner of the 2021 Ferran Sunyer i Balaguer Prize, a prestigious award for books of expository nature presenting the latest developments in an active area of research in mathematics.
A Perspective on Canonical Riemannian Metrics
Author: Giovanni Catino
Publisher: Birkhäuser
ISBN: 9783030571849
Category : Mathematics
Languages : en
Pages : 247
Book Description
This book focuses on a selection of special topics, with emphasis on past and present research of the authors on “canonical” Riemannian metrics on smooth manifolds. On the backdrop of the fundamental contributions given by many experts in the field, the volume offers a self-contained view of the wide class of “Curvature Conditions” and “Critical Metrics” of suitable Riemannian functionals. The authors describe the classical examples and the relevant generalizations. This monograph is the winner of the 2020 Ferran Sunyer i Balaguer Prize, a prestigious award for books of expository nature presenting the latest developments in an active area of research in mathematics.
Publisher: Birkhäuser
ISBN: 9783030571849
Category : Mathematics
Languages : en
Pages : 247
Book Description
This book focuses on a selection of special topics, with emphasis on past and present research of the authors on “canonical” Riemannian metrics on smooth manifolds. On the backdrop of the fundamental contributions given by many experts in the field, the volume offers a self-contained view of the wide class of “Curvature Conditions” and “Critical Metrics” of suitable Riemannian functionals. The authors describe the classical examples and the relevant generalizations. This monograph is the winner of the 2020 Ferran Sunyer i Balaguer Prize, a prestigious award for books of expository nature presenting the latest developments in an active area of research in mathematics.
Representation Theory, Mathematical Physics, and Integrable Systems
Author: Anton Alekseev
Publisher: Birkhäuser
ISBN: 9783030781477
Category : Mathematics
Languages : en
Pages : 643
Book Description
Over the course of his distinguished career, Nicolai Reshetikhin has made a number of groundbreaking contributions in several fields, including representation theory, integrable systems, and topology. The chapters in this volume – compiled on the occasion of his 60th birthday – are written by distinguished mathematicians and physicists and pay tribute to his many significant and lasting achievements. Covering the latest developments at the interface of noncommutative algebra, differential and algebraic geometry, and perspectives arising from physics, this volume explores topics such as the development of new and powerful knot invariants, new perspectives on enumerative geometry and string theory, and the introduction of cluster algebra and categorification techniques into a broad range of areas. Chapters will also cover novel applications of representation theory to random matrix theory, exactly solvable models in statistical mechanics, and integrable hierarchies. The recent progress in the mathematical and physicals aspects of deformation quantization and tensor categories is also addressed. Representation Theory, Mathematical Physics, and Integrable Systems will be of interest to a wide audience of mathematicians interested in these areas and the connections between them, ranging from graduate students to junior, mid-career, and senior researchers.
Publisher: Birkhäuser
ISBN: 9783030781477
Category : Mathematics
Languages : en
Pages : 643
Book Description
Over the course of his distinguished career, Nicolai Reshetikhin has made a number of groundbreaking contributions in several fields, including representation theory, integrable systems, and topology. The chapters in this volume – compiled on the occasion of his 60th birthday – are written by distinguished mathematicians and physicists and pay tribute to his many significant and lasting achievements. Covering the latest developments at the interface of noncommutative algebra, differential and algebraic geometry, and perspectives arising from physics, this volume explores topics such as the development of new and powerful knot invariants, new perspectives on enumerative geometry and string theory, and the introduction of cluster algebra and categorification techniques into a broad range of areas. Chapters will also cover novel applications of representation theory to random matrix theory, exactly solvable models in statistical mechanics, and integrable hierarchies. The recent progress in the mathematical and physicals aspects of deformation quantization and tensor categories is also addressed. Representation Theory, Mathematical Physics, and Integrable Systems will be of interest to a wide audience of mathematicians interested in these areas and the connections between them, ranging from graduate students to junior, mid-career, and senior researchers.
Progress to Higher Mathematics
Author: Mary Teresa Fyfe
Publisher:
ISBN: 9780955547706
Category : Mathematics
Languages : en
Pages : 0
Book Description
Publisher:
ISBN: 9780955547706
Category : Mathematics
Languages : en
Pages : 0
Book Description
Progress in Mathematics
Author: R. V. Gamkrelidze
Publisher: Springer Science & Business Media
ISBN: 1468433067
Category : Mathematics
Languages : en
Pages : 258
Book Description
This volume contains five review articles, two in the Algebra part and three in the Geometry part, surveying the fields of cate gories and class field theory, in the Algebra part, and of Finsler spaces, structures on differentiable manifolds, and packing, cover ing, etc., in the Geometry part. The literature covered is primar Hy that published in 1964-1967. Contents ALGEBRA CATEGORIES ............... . 3 M. S. Tsalenko and E. G. Shul'geifer § 1. Introduction........... 3 § 2. Foundations of the Theory of Categories . . . . . 4 § 3. Fundamentals of the Theory of Categories . . . . . 6 § 4. Embeddings of Categories ... . . . . . . . . . . . . 14 § 5. Representations of Categories . . . . . . . . . . . . . 16 § 6. Axiomatic Characteristics of Algebraic Categories . . . . . . . . . . . . . . . . . . . . . . . . . . 18 § 7. Reflective Subcategories; Varieties. . . 20 § 8. Radicals in Categories . . . . . . . 24 § 9. Categories with Involution. . . . . . 29 § 10. Universal Algebras in Categories . 30 § 11. Categories with Multiplication . . . 34 § 12. Duality of Functors. .. ....... 37 § 13. Homotopy Theory . . . . .. ........... 39 § 14. Homological Algebra in Categories. . . . . . 41 § 15. Concrete Categories . . . . .. ......... 44 § 16. Generalizations.. . . . . . . 45 Literature Cited . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 CLASS FIELD THEORY. FIELD EXTENSIONS. . . . . . . . 59 S. P. Demushkin 66 Literature Cited vii CONTENTS viii GEOMETRY 75 FINSLER SPACES AND THEIR GENERALIZATIONS ..
Publisher: Springer Science & Business Media
ISBN: 1468433067
Category : Mathematics
Languages : en
Pages : 258
Book Description
This volume contains five review articles, two in the Algebra part and three in the Geometry part, surveying the fields of cate gories and class field theory, in the Algebra part, and of Finsler spaces, structures on differentiable manifolds, and packing, cover ing, etc., in the Geometry part. The literature covered is primar Hy that published in 1964-1967. Contents ALGEBRA CATEGORIES ............... . 3 M. S. Tsalenko and E. G. Shul'geifer § 1. Introduction........... 3 § 2. Foundations of the Theory of Categories . . . . . 4 § 3. Fundamentals of the Theory of Categories . . . . . 6 § 4. Embeddings of Categories ... . . . . . . . . . . . . 14 § 5. Representations of Categories . . . . . . . . . . . . . 16 § 6. Axiomatic Characteristics of Algebraic Categories . . . . . . . . . . . . . . . . . . . . . . . . . . 18 § 7. Reflective Subcategories; Varieties. . . 20 § 8. Radicals in Categories . . . . . . . 24 § 9. Categories with Involution. . . . . . 29 § 10. Universal Algebras in Categories . 30 § 11. Categories with Multiplication . . . 34 § 12. Duality of Functors. .. ....... 37 § 13. Homotopy Theory . . . . .. ........... 39 § 14. Homological Algebra in Categories. . . . . . 41 § 15. Concrete Categories . . . . .. ......... 44 § 16. Generalizations.. . . . . . . 45 Literature Cited . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 CLASS FIELD THEORY. FIELD EXTENSIONS. . . . . . . . 59 S. P. Demushkin 66 Literature Cited vii CONTENTS viii GEOMETRY 75 FINSLER SPACES AND THEIR GENERALIZATIONS ..
The Identification of Progress in Learning
Author: T. Hägerstrand
Publisher: Cambridge University Press
ISBN: 9780521300872
Category : Education
Languages : en
Pages : 232
Book Description
This series of essays discusses how progress is identified in a range of disciplines - physics, mathematics, biology, medicine, sociology, linguistics, art history, history, economics and ecology. The articles are based on discussions at a symposium organised by the European Science Foundation and are by acknowledged leaders in the fields covered. They seek to promote communication between the different disciplines, to identify the criteria of advancement and to examine problems in assessing them.
Publisher: Cambridge University Press
ISBN: 9780521300872
Category : Education
Languages : en
Pages : 232
Book Description
This series of essays discusses how progress is identified in a range of disciplines - physics, mathematics, biology, medicine, sociology, linguistics, art history, history, economics and ecology. The articles are based on discussions at a symposium organised by the European Science Foundation and are by acknowledged leaders in the fields covered. They seek to promote communication between the different disciplines, to identify the criteria of advancement and to examine problems in assessing them.