Author: E. Stein
Publisher: Springer
ISBN: 3709126266
Category : Technology & Engineering
Languages : en
Pages : 291
Book Description
Five main topics of computational plasticity are treated by experts in the field with latest research results, such as consistent linearizations and finite element techniques, the numerical analysis for stable volume-preserving time-integration at the plastic flow rule, the analysis and finite-element computation of shearband localizations and also of shake down load-factors for arbitrary non-linear kinematic hardening materials. The aim was primarely an integrated representation of the mathematical models, the analysis of numerical methods and the newest algorithms for the consistent and stable computation of large dimensional systems. The significance should be seen in the collection of textbook-like treatments of important new results from wellknown scientists.
Progress in Computational Analysis of Inelastic Structures
Author: E. Stein
Publisher: Springer
ISBN: 3709126266
Category : Technology & Engineering
Languages : en
Pages : 291
Book Description
Five main topics of computational plasticity are treated by experts in the field with latest research results, such as consistent linearizations and finite element techniques, the numerical analysis for stable volume-preserving time-integration at the plastic flow rule, the analysis and finite-element computation of shearband localizations and also of shake down load-factors for arbitrary non-linear kinematic hardening materials. The aim was primarely an integrated representation of the mathematical models, the analysis of numerical methods and the newest algorithms for the consistent and stable computation of large dimensional systems. The significance should be seen in the collection of textbook-like treatments of important new results from wellknown scientists.
Publisher: Springer
ISBN: 3709126266
Category : Technology & Engineering
Languages : en
Pages : 291
Book Description
Five main topics of computational plasticity are treated by experts in the field with latest research results, such as consistent linearizations and finite element techniques, the numerical analysis for stable volume-preserving time-integration at the plastic flow rule, the analysis and finite-element computation of shearband localizations and also of shake down load-factors for arbitrary non-linear kinematic hardening materials. The aim was primarely an integrated representation of the mathematical models, the analysis of numerical methods and the newest algorithms for the consistent and stable computation of large dimensional systems. The significance should be seen in the collection of textbook-like treatments of important new results from wellknown scientists.
Progress in Computational Analysis of Inelastic Structures
Author: E. Stein
Publisher:
ISBN: 9783709126271
Category :
Languages : en
Pages : 296
Book Description
Publisher:
ISBN: 9783709126271
Category :
Languages : en
Pages : 296
Book Description
Inelastic Analysis of Structures under Variable Loads
Author: Dieter Weichert
Publisher: Springer Science & Business Media
ISBN: 9780792366454
Category : Technology & Engineering
Languages : en
Pages : 396
Book Description
The question whether a structure or a machine component can carry the applied loads, and with which margin of safety, or whether it will become unserviceable due to collapse or excessive inelastic deformations, has always been a major concern for civil and mechanical engineers. The development of methods to answer this technologically crucial question without analysing the evolution of the system under varying loads, has a long tradition that can be traced back even to the times of emerging mechanical sciences in the early 17th century. However, the scientific foundations of the theories underlying these methods, nowadays frequently called "direct", were established sporadically in the Thirties of the 20th century and systematically and rigorously in the Fifties. Further motivations for the development of direct analysis techniques in applied mechanics of solids and structures arise from the circumstance that in many engineering situations the external actions fluctuate according to time histories not a priori known except for some essential features, e.g. variation intervals. In such situations the critical events (or "limit states") to consider, besides plastic collapse, are incremental collapse (or "ratchetting") and alternating plastic yielding, namely lack of "shakedown". Non evolutionary, direct methods for ultimate limit state analysis of structures subjected to variably-repeated external actions are the objectives of most papers collected in this book, which also contains a few contributions on related topics.
Publisher: Springer Science & Business Media
ISBN: 9780792366454
Category : Technology & Engineering
Languages : en
Pages : 396
Book Description
The question whether a structure or a machine component can carry the applied loads, and with which margin of safety, or whether it will become unserviceable due to collapse or excessive inelastic deformations, has always been a major concern for civil and mechanical engineers. The development of methods to answer this technologically crucial question without analysing the evolution of the system under varying loads, has a long tradition that can be traced back even to the times of emerging mechanical sciences in the early 17th century. However, the scientific foundations of the theories underlying these methods, nowadays frequently called "direct", were established sporadically in the Thirties of the 20th century and systematically and rigorously in the Fifties. Further motivations for the development of direct analysis techniques in applied mechanics of solids and structures arise from the circumstance that in many engineering situations the external actions fluctuate according to time histories not a priori known except for some essential features, e.g. variation intervals. In such situations the critical events (or "limit states") to consider, besides plastic collapse, are incremental collapse (or "ratchetting") and alternating plastic yielding, namely lack of "shakedown". Non evolutionary, direct methods for ultimate limit state analysis of structures subjected to variably-repeated external actions are the objectives of most papers collected in this book, which also contains a few contributions on related topics.
Inelastic Analysis of Solids and Structures
Author: M. Kojic
Publisher: Springer Science & Business Media
ISBN: 3540265074
Category : Science
Languages : en
Pages : 419
Book Description
Inelastic Analysis of Solids and Structures presents in a unified manner the physical and theoretical background of inelastic material models and computational methods, and illustrates the behavior of the models in typical engineering conditions. The book describes experimental observations and principles of mechanics, and efficient computational algorithms for stress calculations as typically performed in finite element analysis. The theoretical background is given to an extent necessary to describe the commonly employed material models in metal isotropic and orthotropic plasticity, thermoplasticity and viscoplasticity, and the plasticity of geological materials. The computational algorithms are developed in a unified manner with some detailed derivations of the algorithmic relations. Many solved examples are presented, which are designed to give insight into the material behavior in various engineering conditions, and to demonstrate the application of the computational algorithms.
Publisher: Springer Science & Business Media
ISBN: 3540265074
Category : Science
Languages : en
Pages : 419
Book Description
Inelastic Analysis of Solids and Structures presents in a unified manner the physical and theoretical background of inelastic material models and computational methods, and illustrates the behavior of the models in typical engineering conditions. The book describes experimental observations and principles of mechanics, and efficient computational algorithms for stress calculations as typically performed in finite element analysis. The theoretical background is given to an extent necessary to describe the commonly employed material models in metal isotropic and orthotropic plasticity, thermoplasticity and viscoplasticity, and the plasticity of geological materials. The computational algorithms are developed in a unified manner with some detailed derivations of the algorithmic relations. Many solved examples are presented, which are designed to give insight into the material behavior in various engineering conditions, and to demonstrate the application of the computational algorithms.
Direct Methods for Limit State of Materials and Structures
Author: Giovanni Garcea
Publisher: Springer Nature
ISBN: 3031291220
Category : Science
Languages : en
Pages : 295
Book Description
This book provides an overview of direct methods, such as limit and shakedown analysis, which are intended for avoiding cumbersome step-by-step calculations to determine the limit states of mechanical structures under monotone, cyclic or variable actions with unknown loading history. The book comprises several contributions that demonstrate how tremendous advances in numerical methods, especially in optimization, have contributed to the success of direct methods and their applicability to practical engineering problems in structural mechanics and mechanics of materials. The contents reflect the outcomes of the workshop “Direct Methods for Limit State of Materials and Structures,” held in Cosenza, Italy in June 2022.
Publisher: Springer Nature
ISBN: 3031291220
Category : Science
Languages : en
Pages : 295
Book Description
This book provides an overview of direct methods, such as limit and shakedown analysis, which are intended for avoiding cumbersome step-by-step calculations to determine the limit states of mechanical structures under monotone, cyclic or variable actions with unknown loading history. The book comprises several contributions that demonstrate how tremendous advances in numerical methods, especially in optimization, have contributed to the success of direct methods and their applicability to practical engineering problems in structural mechanics and mechanics of materials. The contents reflect the outcomes of the workshop “Direct Methods for Limit State of Materials and Structures,” held in Cosenza, Italy in June 2022.
Computational Plasticity
Author: Mao-Hong Yu
Publisher: Springer Science & Business Media
ISBN: 3642245900
Category : Technology & Engineering
Languages : en
Pages : 550
Book Description
“Computational Plasticity with Emphasis on the Application of the Unified Strength Theory” explores a new and important branch of computational mechanics and is the third book in a plasticity series published by Springer. The other two are: Generalized Plasticity, Springer: Berlin, 2006; and Structural Plasticity, Springer and Zhejiang University Press: Hangzhou, 2009. This monograph describes the unified strength theory and associated flow rule, the implementation of these basic theories in computational programs, and shows how a series of results can be obtained by using them. The unified strength theory has been implemented in several special nonlinear finite-element programs and commercial Finite Element Codes by individual users and corporations. Many new and interesting findings for beams, plates, underground caves, excavations, strip foundations, circular foundations, slop, underground structures of hydraulic power stations, pumped-storage power stations, underground mining, high-velocity penetration of concrete structures, ancient structures, and rocket components, along with relevant computational results, are presented. This book is intended for graduate students, researchers and engineers working in solid mechanics, engineering and materials science. The theories and methods provided in this book can also be used for other computer codes and different structures. More results can be obtained, which put the potential strength of the material to better use, thus offering material-saving and energy-saving solutions. Mao-Hong Yu is a professor at the Department of Civil Engineering at Xi'an Jiaotong University, Xi'an, China.
Publisher: Springer Science & Business Media
ISBN: 3642245900
Category : Technology & Engineering
Languages : en
Pages : 550
Book Description
“Computational Plasticity with Emphasis on the Application of the Unified Strength Theory” explores a new and important branch of computational mechanics and is the third book in a plasticity series published by Springer. The other two are: Generalized Plasticity, Springer: Berlin, 2006; and Structural Plasticity, Springer and Zhejiang University Press: Hangzhou, 2009. This monograph describes the unified strength theory and associated flow rule, the implementation of these basic theories in computational programs, and shows how a series of results can be obtained by using them. The unified strength theory has been implemented in several special nonlinear finite-element programs and commercial Finite Element Codes by individual users and corporations. Many new and interesting findings for beams, plates, underground caves, excavations, strip foundations, circular foundations, slop, underground structures of hydraulic power stations, pumped-storage power stations, underground mining, high-velocity penetration of concrete structures, ancient structures, and rocket components, along with relevant computational results, are presented. This book is intended for graduate students, researchers and engineers working in solid mechanics, engineering and materials science. The theories and methods provided in this book can also be used for other computer codes and different structures. More results can be obtained, which put the potential strength of the material to better use, thus offering material-saving and energy-saving solutions. Mao-Hong Yu is a professor at the Department of Civil Engineering at Xi'an Jiaotong University, Xi'an, China.
New Developments in Contact Problems
Author: Peter Wriggers
Publisher: Springer Science & Business Media
ISBN: 9783211831540
Category : Science
Languages : en
Pages : 264
Book Description
The book gives an overview on formulation, mathematical analysis and numerical solution procedures of contact problems. In this respect the book should be of value to applied mathematicians and engineers who are concerned with contact mechanics.
Publisher: Springer Science & Business Media
ISBN: 9783211831540
Category : Science
Languages : en
Pages : 264
Book Description
The book gives an overview on formulation, mathematical analysis and numerical solution procedures of contact problems. In this respect the book should be of value to applied mathematicians and engineers who are concerned with contact mechanics.
Applied Mechanics Reviews
Author:
Publisher:
ISBN:
Category : Mechanics, Applied
Languages : en
Pages : 1518
Book Description
Publisher:
ISBN:
Category : Mechanics, Applied
Languages : en
Pages : 1518
Book Description
Computer Science Handbook
Author: Allen B. Tucker
Publisher: CRC Press
ISBN: 0203494458
Category : Computers
Languages : en
Pages : 2742
Book Description
When you think about how far and fast computer science has progressed in recent years, it's not hard to conclude that a seven-year old handbook may fall a little short of the kind of reference today's computer scientists, software engineers, and IT professionals need. With a broadened scope, more emphasis on applied computing, and more than 70 chap
Publisher: CRC Press
ISBN: 0203494458
Category : Computers
Languages : en
Pages : 2742
Book Description
When you think about how far and fast computer science has progressed in recent years, it's not hard to conclude that a seven-year old handbook may fall a little short of the kind of reference today's computer scientists, software engineers, and IT professionals need. With a broadened scope, more emphasis on applied computing, and more than 70 chap
Quasidifferentiability and Nonsmooth Modelling in Mechanics, Engineering and Economics
Author: Vladimir F. Demyanov
Publisher: Springer Science & Business Media
ISBN: 1461541131
Category : Computers
Languages : en
Pages : 362
Book Description
Nonsmooth energy functions govern phenomena which occur frequently in nature and in all areas of life. They constitute a fascinating subject in mathematics and permit the rational understanding of yet unsolved or partially solved questions in mechanics, engineering and economics. This is the first book to provide a complete and rigorous presentation of the quasidifferentiability approach to nonconvex, possibly nonsmooth, energy functions, of the derivation and study of the corresponding variational expressions in mechanics, engineering and economics, and of their numerical treatment. The new variational formulations derived are illustrated by many interesting numerical problems. The techniques presented will permit the reader to check any solution obtained by other heuristic techniques for nonconvex, nonsmooth energy problems. A civil, mechanical or aeronautical engineer can find in the book the only existing mathematically sound technique for the formulation and study of nonconvex, nonsmooth energy problems. Audience: The book will be of interest to pure and applied mathematicians, physicists, researchers in mechanics, civil, mechanical and aeronautical engineers, structural analysts and software developers. It is also suitable for graduate courses in nonlinear mechanics, nonsmooth analysis, applied optimization, control, calculus of variations and computational mechanics.
Publisher: Springer Science & Business Media
ISBN: 1461541131
Category : Computers
Languages : en
Pages : 362
Book Description
Nonsmooth energy functions govern phenomena which occur frequently in nature and in all areas of life. They constitute a fascinating subject in mathematics and permit the rational understanding of yet unsolved or partially solved questions in mechanics, engineering and economics. This is the first book to provide a complete and rigorous presentation of the quasidifferentiability approach to nonconvex, possibly nonsmooth, energy functions, of the derivation and study of the corresponding variational expressions in mechanics, engineering and economics, and of their numerical treatment. The new variational formulations derived are illustrated by many interesting numerical problems. The techniques presented will permit the reader to check any solution obtained by other heuristic techniques for nonconvex, nonsmooth energy problems. A civil, mechanical or aeronautical engineer can find in the book the only existing mathematically sound technique for the formulation and study of nonconvex, nonsmooth energy problems. Audience: The book will be of interest to pure and applied mathematicians, physicists, researchers in mechanics, civil, mechanical and aeronautical engineers, structural analysts and software developers. It is also suitable for graduate courses in nonlinear mechanics, nonsmooth analysis, applied optimization, control, calculus of variations and computational mechanics.