Author: Tom Deakin
Publisher: MIT Press
ISBN: 026237773X
Category : Computers
Languages : en
Pages : 332
Book Description
The essential guide for writing portable, parallel programs for GPUs using the OpenMP programming model. Today’s computers are complex, multi-architecture systems: multiple cores in a shared address space, graphics processing units (GPUs), and specialized accelerators. To get the most from these systems, programs must use all these different processors. In Programming Your GPU with OpenMP, Tom Deakin and Timothy Mattson help everyone, from beginners to advanced programmers, learn how to use OpenMP to program a GPU using just a few directives and runtime functions. Then programmers can go further to maximize performance by using CPUs and GPUs in parallel—true heterogeneous programming. And since OpenMP is a portable API, the programs will run on almost any system. Programming Your GPU with OpenMP shares best practices for writing performance portable programs. Key features include: The most up-to-date APIs for programming GPUs with OpenMP with concepts that transfer to other approaches for GPU programming. Written in a tutorial style that embraces active learning, so that readers can make immediate use of what they learn via provided source code. Builds the OpenMP GPU Common Core to get programmers to serious production-level GPU programming as fast as possible. Additional features: A reference guide at the end of the book covering all relevant parts of OpenMP 5.2. An online repository containing source code for the example programs from the book—provided in all languages currently supported by OpenMP: C, C++, and Fortran. Tutorial videos and lecture slides.
Programming Your GPU with OpenMP
Author: Tom Deakin
Publisher: MIT Press
ISBN: 026237773X
Category : Computers
Languages : en
Pages : 332
Book Description
The essential guide for writing portable, parallel programs for GPUs using the OpenMP programming model. Today’s computers are complex, multi-architecture systems: multiple cores in a shared address space, graphics processing units (GPUs), and specialized accelerators. To get the most from these systems, programs must use all these different processors. In Programming Your GPU with OpenMP, Tom Deakin and Timothy Mattson help everyone, from beginners to advanced programmers, learn how to use OpenMP to program a GPU using just a few directives and runtime functions. Then programmers can go further to maximize performance by using CPUs and GPUs in parallel—true heterogeneous programming. And since OpenMP is a portable API, the programs will run on almost any system. Programming Your GPU with OpenMP shares best practices for writing performance portable programs. Key features include: The most up-to-date APIs for programming GPUs with OpenMP with concepts that transfer to other approaches for GPU programming. Written in a tutorial style that embraces active learning, so that readers can make immediate use of what they learn via provided source code. Builds the OpenMP GPU Common Core to get programmers to serious production-level GPU programming as fast as possible. Additional features: A reference guide at the end of the book covering all relevant parts of OpenMP 5.2. An online repository containing source code for the example programs from the book—provided in all languages currently supported by OpenMP: C, C++, and Fortran. Tutorial videos and lecture slides.
Publisher: MIT Press
ISBN: 026237773X
Category : Computers
Languages : en
Pages : 332
Book Description
The essential guide for writing portable, parallel programs for GPUs using the OpenMP programming model. Today’s computers are complex, multi-architecture systems: multiple cores in a shared address space, graphics processing units (GPUs), and specialized accelerators. To get the most from these systems, programs must use all these different processors. In Programming Your GPU with OpenMP, Tom Deakin and Timothy Mattson help everyone, from beginners to advanced programmers, learn how to use OpenMP to program a GPU using just a few directives and runtime functions. Then programmers can go further to maximize performance by using CPUs and GPUs in parallel—true heterogeneous programming. And since OpenMP is a portable API, the programs will run on almost any system. Programming Your GPU with OpenMP shares best practices for writing performance portable programs. Key features include: The most up-to-date APIs for programming GPUs with OpenMP with concepts that transfer to other approaches for GPU programming. Written in a tutorial style that embraces active learning, so that readers can make immediate use of what they learn via provided source code. Builds the OpenMP GPU Common Core to get programmers to serious production-level GPU programming as fast as possible. Additional features: A reference guide at the end of the book covering all relevant parts of OpenMP 5.2. An online repository containing source code for the example programs from the book—provided in all languages currently supported by OpenMP: C, C++, and Fortran. Tutorial videos and lecture slides.
Programming Your GPU with OpenMP
Author: Tom Deakin
Publisher: MIT Press
ISBN: 0262547538
Category : Computers
Languages : en
Pages : 332
Book Description
The essential guide for writing portable, parallel programs for GPUs using the OpenMP programming model. Today’s computers are complex, multi-architecture systems: multiple cores in a shared address space, graphics processing units (GPUs), and specialized accelerators. To get the most from these systems, programs must use all these different processors. In Programming Your GPU with OpenMP, Tom Deakin and Timothy Mattson help everyone, from beginners to advanced programmers, learn how to use OpenMP to program a GPU using just a few directives and runtime functions. Then programmers can go further to maximize performance by using CPUs and GPUs in parallel—true heterogeneous programming. And since OpenMP is a portable API, the programs will run on almost any system. Programming Your GPU with OpenMP shares best practices for writing performance portable programs. Key features include: The most up-to-date APIs for programming GPUs with OpenMP with concepts that transfer to other approaches for GPU programming. Written in a tutorial style that embraces active learning, so that readers can make immediate use of what they learn via provided source code. Builds the OpenMP GPU Common Core to get programmers to serious production-level GPU programming as fast as possible. Additional features: A reference guide at the end of the book covering all relevant parts of OpenMP 5.2. An online repository containing source code for the example programs from the book—provided in all languages currently supported by OpenMP: C, C++, and Fortran. Tutorial videos and lecture slides.
Publisher: MIT Press
ISBN: 0262547538
Category : Computers
Languages : en
Pages : 332
Book Description
The essential guide for writing portable, parallel programs for GPUs using the OpenMP programming model. Today’s computers are complex, multi-architecture systems: multiple cores in a shared address space, graphics processing units (GPUs), and specialized accelerators. To get the most from these systems, programs must use all these different processors. In Programming Your GPU with OpenMP, Tom Deakin and Timothy Mattson help everyone, from beginners to advanced programmers, learn how to use OpenMP to program a GPU using just a few directives and runtime functions. Then programmers can go further to maximize performance by using CPUs and GPUs in parallel—true heterogeneous programming. And since OpenMP is a portable API, the programs will run on almost any system. Programming Your GPU with OpenMP shares best practices for writing performance portable programs. Key features include: The most up-to-date APIs for programming GPUs with OpenMP with concepts that transfer to other approaches for GPU programming. Written in a tutorial style that embraces active learning, so that readers can make immediate use of what they learn via provided source code. Builds the OpenMP GPU Common Core to get programmers to serious production-level GPU programming as fast as possible. Additional features: A reference guide at the end of the book covering all relevant parts of OpenMP 5.2. An online repository containing source code for the example programs from the book—provided in all languages currently supported by OpenMP: C, C++, and Fortran. Tutorial videos and lecture slides.
Using OpenMP
Author: Barbara Chapman
Publisher: MIT Press
ISBN: 0262533022
Category : Computers
Languages : en
Pages : 378
Book Description
A comprehensive overview of OpenMP, the standard application programming interface for shared memory parallel computing—a reference for students and professionals. "I hope that readers will learn to use the full expressibility and power of OpenMP. This book should provide an excellent introduction to beginners, and the performance section should help those with some experience who want to push OpenMP to its limits." —from the foreword by David J. Kuck, Intel Fellow, Software and Solutions Group, and Director, Parallel and Distributed Solutions, Intel Corporation OpenMP, a portable programming interface for shared memory parallel computers, was adopted as an informal standard in 1997 by computer scientists who wanted a unified model on which to base programs for shared memory systems. OpenMP is now used by many software developers; it offers significant advantages over both hand-threading and MPI. Using OpenMP offers a comprehensive introduction to parallel programming concepts and a detailed overview of OpenMP. Using OpenMP discusses hardware developments, describes where OpenMP is applicable, and compares OpenMP to other programming interfaces for shared and distributed memory parallel architectures. It introduces the individual features of OpenMP, provides many source code examples that demonstrate the use and functionality of the language constructs, and offers tips on writing an efficient OpenMP program. It describes how to use OpenMP in full-scale applications to achieve high performance on large-scale architectures, discussing several case studies in detail, and offers in-depth troubleshooting advice. It explains how OpenMP is translated into explicitly multithreaded code, providing a valuable behind-the-scenes account of OpenMP program performance. Finally, Using OpenMP considers trends likely to influence OpenMP development, offering a glimpse of the possibilities of a future OpenMP 3.0 from the vantage point of the current OpenMP 2.5. With multicore computer use increasing, the need for a comprehensive introduction and overview of the standard interface is clear. Using OpenMP provides an essential reference not only for students at both undergraduate and graduate levels but also for professionals who intend to parallelize existing codes or develop new parallel programs for shared memory computer architectures.
Publisher: MIT Press
ISBN: 0262533022
Category : Computers
Languages : en
Pages : 378
Book Description
A comprehensive overview of OpenMP, the standard application programming interface for shared memory parallel computing—a reference for students and professionals. "I hope that readers will learn to use the full expressibility and power of OpenMP. This book should provide an excellent introduction to beginners, and the performance section should help those with some experience who want to push OpenMP to its limits." —from the foreword by David J. Kuck, Intel Fellow, Software and Solutions Group, and Director, Parallel and Distributed Solutions, Intel Corporation OpenMP, a portable programming interface for shared memory parallel computers, was adopted as an informal standard in 1997 by computer scientists who wanted a unified model on which to base programs for shared memory systems. OpenMP is now used by many software developers; it offers significant advantages over both hand-threading and MPI. Using OpenMP offers a comprehensive introduction to parallel programming concepts and a detailed overview of OpenMP. Using OpenMP discusses hardware developments, describes where OpenMP is applicable, and compares OpenMP to other programming interfaces for shared and distributed memory parallel architectures. It introduces the individual features of OpenMP, provides many source code examples that demonstrate the use and functionality of the language constructs, and offers tips on writing an efficient OpenMP program. It describes how to use OpenMP in full-scale applications to achieve high performance on large-scale architectures, discussing several case studies in detail, and offers in-depth troubleshooting advice. It explains how OpenMP is translated into explicitly multithreaded code, providing a valuable behind-the-scenes account of OpenMP program performance. Finally, Using OpenMP considers trends likely to influence OpenMP development, offering a glimpse of the possibilities of a future OpenMP 3.0 from the vantage point of the current OpenMP 2.5. With multicore computer use increasing, the need for a comprehensive introduction and overview of the standard interface is clear. Using OpenMP provides an essential reference not only for students at both undergraduate and graduate levels but also for professionals who intend to parallelize existing codes or develop new parallel programs for shared memory computer architectures.
Structured Parallel Programming
Author: Michael McCool
Publisher: Elsevier
ISBN: 0124159931
Category : Computers
Languages : en
Pages : 434
Book Description
Programming is now parallel programming. Much as structured programming revolutionized traditional serial programming decades ago, a new kind of structured programming, based on patterns, is relevant to parallel programming today. Parallel computing experts and industry insiders Michael McCool, Arch Robison, and James Reinders describe how to design and implement maintainable and efficient parallel algorithms using a pattern-based approach. They present both theory and practice, and give detailed concrete examples using multiple programming models. Examples are primarily given using two of the most popular and cutting edge programming models for parallel programming: Threading Building Blocks, and Cilk Plus. These architecture-independent models enable easy integration into existing applications, preserve investments in existing code, and speed the development of parallel applications. Examples from realistic contexts illustrate patterns and themes in parallel algorithm design that are widely applicable regardless of implementation technology. The patterns-based approach offers structure and insight that developers can apply to a variety of parallel programming models Develops a composable, structured, scalable, and machine-independent approach to parallel computing Includes detailed examples in both Cilk Plus and the latest Threading Building Blocks, which support a wide variety of computers
Publisher: Elsevier
ISBN: 0124159931
Category : Computers
Languages : en
Pages : 434
Book Description
Programming is now parallel programming. Much as structured programming revolutionized traditional serial programming decades ago, a new kind of structured programming, based on patterns, is relevant to parallel programming today. Parallel computing experts and industry insiders Michael McCool, Arch Robison, and James Reinders describe how to design and implement maintainable and efficient parallel algorithms using a pattern-based approach. They present both theory and practice, and give detailed concrete examples using multiple programming models. Examples are primarily given using two of the most popular and cutting edge programming models for parallel programming: Threading Building Blocks, and Cilk Plus. These architecture-independent models enable easy integration into existing applications, preserve investments in existing code, and speed the development of parallel applications. Examples from realistic contexts illustrate patterns and themes in parallel algorithm design that are widely applicable regardless of implementation technology. The patterns-based approach offers structure and insight that developers can apply to a variety of parallel programming models Develops a composable, structured, scalable, and machine-independent approach to parallel computing Includes detailed examples in both Cilk Plus and the latest Threading Building Blocks, which support a wide variety of computers
Programming Massively Parallel Processors
Author: David B. Kirk
Publisher: Newnes
ISBN: 0123914183
Category : Computers
Languages : en
Pages : 519
Book Description
Programming Massively Parallel Processors: A Hands-on Approach, Second Edition, teaches students how to program massively parallel processors. It offers a detailed discussion of various techniques for constructing parallel programs. Case studies are used to demonstrate the development process, which begins with computational thinking and ends with effective and efficient parallel programs. This guide shows both student and professional alike the basic concepts of parallel programming and GPU architecture. Topics of performance, floating-point format, parallel patterns, and dynamic parallelism are covered in depth. This revised edition contains more parallel programming examples, commonly-used libraries such as Thrust, and explanations of the latest tools. It also provides new coverage of CUDA 5.0, improved performance, enhanced development tools, increased hardware support, and more; increased coverage of related technology, OpenCL and new material on algorithm patterns, GPU clusters, host programming, and data parallelism; and two new case studies (on MRI reconstruction and molecular visualization) that explore the latest applications of CUDA and GPUs for scientific research and high-performance computing. This book should be a valuable resource for advanced students, software engineers, programmers, and hardware engineers. - New coverage of CUDA 5.0, improved performance, enhanced development tools, increased hardware support, and more - Increased coverage of related technology, OpenCL and new material on algorithm patterns, GPU clusters, host programming, and data parallelism - Two new case studies (on MRI reconstruction and molecular visualization) explore the latest applications of CUDA and GPUs for scientific research and high-performance computing
Publisher: Newnes
ISBN: 0123914183
Category : Computers
Languages : en
Pages : 519
Book Description
Programming Massively Parallel Processors: A Hands-on Approach, Second Edition, teaches students how to program massively parallel processors. It offers a detailed discussion of various techniques for constructing parallel programs. Case studies are used to demonstrate the development process, which begins with computational thinking and ends with effective and efficient parallel programs. This guide shows both student and professional alike the basic concepts of parallel programming and GPU architecture. Topics of performance, floating-point format, parallel patterns, and dynamic parallelism are covered in depth. This revised edition contains more parallel programming examples, commonly-used libraries such as Thrust, and explanations of the latest tools. It also provides new coverage of CUDA 5.0, improved performance, enhanced development tools, increased hardware support, and more; increased coverage of related technology, OpenCL and new material on algorithm patterns, GPU clusters, host programming, and data parallelism; and two new case studies (on MRI reconstruction and molecular visualization) that explore the latest applications of CUDA and GPUs for scientific research and high-performance computing. This book should be a valuable resource for advanced students, software engineers, programmers, and hardware engineers. - New coverage of CUDA 5.0, improved performance, enhanced development tools, increased hardware support, and more - Increased coverage of related technology, OpenCL and new material on algorithm patterns, GPU clusters, host programming, and data parallelism - Two new case studies (on MRI reconstruction and molecular visualization) explore the latest applications of CUDA and GPUs for scientific research and high-performance computing
Multicore and GPU Programming
Author: Gerassimos Barlas
Publisher: Elsevier
ISBN: 0124171400
Category : Computers
Languages : en
Pages : 698
Book Description
Multicore and GPU Programming offers broad coverage of the key parallel computing skillsets: multicore CPU programming and manycore "massively parallel" computing. Using threads, OpenMP, MPI, and CUDA, it teaches the design and development of software capable of taking advantage of today's computing platforms incorporating CPU and GPU hardware and explains how to transition from sequential programming to a parallel computing paradigm. Presenting material refined over more than a decade of teaching parallel computing, author Gerassimos Barlas minimizes the challenge with multiple examples, extensive case studies, and full source code. Using this book, you can develop programs that run over distributed memory machines using MPI, create multi-threaded applications with either libraries or directives, write optimized applications that balance the workload between available computing resources, and profile and debug programs targeting multicore machines. - Comprehensive coverage of all major multicore programming tools, including threads, OpenMP, MPI, and CUDA - Demonstrates parallel programming design patterns and examples of how different tools and paradigms can be integrated for superior performance - Particular focus on the emerging area of divisible load theory and its impact on load balancing and distributed systems - Download source code, examples, and instructor support materials on the book's companion website
Publisher: Elsevier
ISBN: 0124171400
Category : Computers
Languages : en
Pages : 698
Book Description
Multicore and GPU Programming offers broad coverage of the key parallel computing skillsets: multicore CPU programming and manycore "massively parallel" computing. Using threads, OpenMP, MPI, and CUDA, it teaches the design and development of software capable of taking advantage of today's computing platforms incorporating CPU and GPU hardware and explains how to transition from sequential programming to a parallel computing paradigm. Presenting material refined over more than a decade of teaching parallel computing, author Gerassimos Barlas minimizes the challenge with multiple examples, extensive case studies, and full source code. Using this book, you can develop programs that run over distributed memory machines using MPI, create multi-threaded applications with either libraries or directives, write optimized applications that balance the workload between available computing resources, and profile and debug programs targeting multicore machines. - Comprehensive coverage of all major multicore programming tools, including threads, OpenMP, MPI, and CUDA - Demonstrates parallel programming design patterns and examples of how different tools and paradigms can be integrated for superior performance - Particular focus on the emerging area of divisible load theory and its impact on load balancing and distributed systems - Download source code, examples, and instructor support materials on the book's companion website
CUDA Programming
Author: Shane Cook
Publisher: Newnes
ISBN: 0124159338
Category : Computers
Languages : en
Pages : 592
Book Description
'CUDA Programming' offers a detailed guide to CUDA with a grounding in parallel fundamentals. It starts by introducing CUDA and bringing you up to speed on GPU parallelism and hardware, then delving into CUDA installation.
Publisher: Newnes
ISBN: 0124159338
Category : Computers
Languages : en
Pages : 592
Book Description
'CUDA Programming' offers a detailed guide to CUDA with a grounding in parallel fundamentals. It starts by introducing CUDA and bringing you up to speed on GPU parallelism and hardware, then delving into CUDA installation.
Advancing OpenMP for Future Accelerators
Author: Alexis Espinosa
Publisher: Springer Nature
ISBN: 3031725670
Category :
Languages : en
Pages : 230
Book Description
Publisher: Springer Nature
ISBN: 3031725670
Category :
Languages : en
Pages : 230
Book Description
Parallel Programming in C with MPI and OpenMP
Author: Michael Jay Quinn
Publisher: McGraw-Hill Education
ISBN: 9780071232654
Category : C (Computer program language)
Languages : en
Pages : 529
Book Description
The era of practical parallel programming has arrived, marked by the popularity of the MPI and OpenMP software standards and the emergence of commodity clusters as the hardware platform of choice for an increasing number of organizations. This exciting new book,Parallel Programming in C with MPI and OpenMPaddresses the needs of students and professionals who want to learn how to design, analyze, implement, and benchmark parallel programs in C using MPI and/or OpenMP. It introduces a rock-solid design methodology with coverage of the most important MPI functions and OpenMP directives. It also demonstrates, through a wide range of examples, how to develop parallel programs that will execute efficiently on today’s parallel platforms. If you are an instructor who has adopted the book and would like access to the additional resources, please contact your local sales rep. or Michelle Flomenhoft at: [email protected].
Publisher: McGraw-Hill Education
ISBN: 9780071232654
Category : C (Computer program language)
Languages : en
Pages : 529
Book Description
The era of practical parallel programming has arrived, marked by the popularity of the MPI and OpenMP software standards and the emergence of commodity clusters as the hardware platform of choice for an increasing number of organizations. This exciting new book,Parallel Programming in C with MPI and OpenMPaddresses the needs of students and professionals who want to learn how to design, analyze, implement, and benchmark parallel programs in C using MPI and/or OpenMP. It introduces a rock-solid design methodology with coverage of the most important MPI functions and OpenMP directives. It also demonstrates, through a wide range of examples, how to develop parallel programs that will execute efficiently on today’s parallel platforms. If you are an instructor who has adopted the book and would like access to the additional resources, please contact your local sales rep. or Michelle Flomenhoft at: [email protected].
Parallel Programming with OpenACC
Author: Rob Farber
Publisher: Newnes
ISBN: 0124104592
Category : Computers
Languages : en
Pages : 328
Book Description
Parallel Programming with OpenACC is a modern, practical guide to implementing dependable computing systems. The book explains how anyone can use OpenACC to quickly ramp-up application performance using high-level code directives called pragmas. The OpenACC directive-based programming model is designed to provide a simple, yet powerful, approach to accelerators without significant programming effort. Author Rob Farber, working with a team of expert contributors, demonstrates how to turn existing applications into portable GPU accelerated programs that demonstrate immediate speedups. The book also helps users get the most from the latest NVIDIA and AMD GPU plus multicore CPU architectures (and soon for Intel® Xeon PhiTM as well). Downloadable example codes provide hands-on OpenACC experience for common problems in scientific, commercial, big-data, and real-time systems. Topics include writing reusable code, asynchronous capabilities, using libraries, multicore clusters, and much more. Each chapter explains how a specific aspect of OpenACC technology fits, how it works, and the pitfalls to avoid. Throughout, the book demonstrates how the use of simple working examples that can be adapted to solve application needs. - Presents the simplest way to leverage GPUs to achieve application speedups - Shows how OpenACC works, including working examples that can be adapted for application needs - Allows readers to download source code and slides from the book's companion web page
Publisher: Newnes
ISBN: 0124104592
Category : Computers
Languages : en
Pages : 328
Book Description
Parallel Programming with OpenACC is a modern, practical guide to implementing dependable computing systems. The book explains how anyone can use OpenACC to quickly ramp-up application performance using high-level code directives called pragmas. The OpenACC directive-based programming model is designed to provide a simple, yet powerful, approach to accelerators without significant programming effort. Author Rob Farber, working with a team of expert contributors, demonstrates how to turn existing applications into portable GPU accelerated programs that demonstrate immediate speedups. The book also helps users get the most from the latest NVIDIA and AMD GPU plus multicore CPU architectures (and soon for Intel® Xeon PhiTM as well). Downloadable example codes provide hands-on OpenACC experience for common problems in scientific, commercial, big-data, and real-time systems. Topics include writing reusable code, asynchronous capabilities, using libraries, multicore clusters, and much more. Each chapter explains how a specific aspect of OpenACC technology fits, how it works, and the pitfalls to avoid. Throughout, the book demonstrates how the use of simple working examples that can be adapted to solve application needs. - Presents the simplest way to leverage GPUs to achieve application speedups - Shows how OpenACC works, including working examples that can be adapted for application needs - Allows readers to download source code and slides from the book's companion web page