Author: Jean Coiffier
Publisher: Cambridge University Press
ISBN: 1139502700
Category : Science
Languages : en
Pages : 363
Book Description
Numerical models have become essential tools in environmental science, particularly in weather forecasting and climate prediction. This book provides a comprehensive overview of the techniques used in these fields, with emphasis on the design of the most recent numerical models of the atmosphere. It presents a short history of numerical weather prediction and its evolution, before describing the various model equations and how to solve them numerically. It outlines the main elements of a meteorological forecast suite, and the theory is illustrated throughout with practical examples of operational models and parameterizations of physical processes. This book is founded on the author's many years of experience, as a scientist at Météo-France and teaching university-level courses. It is a practical and accessible textbook for graduate courses and a handy resource for researchers and professionals in atmospheric physics, meteorology and climatology, as well as the related disciplines of fluid dynamics, hydrology and oceanography.
Fundamentals of Numerical Weather Prediction
Author: Jean Coiffier
Publisher: Cambridge University Press
ISBN: 1139502700
Category : Science
Languages : en
Pages : 363
Book Description
Numerical models have become essential tools in environmental science, particularly in weather forecasting and climate prediction. This book provides a comprehensive overview of the techniques used in these fields, with emphasis on the design of the most recent numerical models of the atmosphere. It presents a short history of numerical weather prediction and its evolution, before describing the various model equations and how to solve them numerically. It outlines the main elements of a meteorological forecast suite, and the theory is illustrated throughout with practical examples of operational models and parameterizations of physical processes. This book is founded on the author's many years of experience, as a scientist at Météo-France and teaching university-level courses. It is a practical and accessible textbook for graduate courses and a handy resource for researchers and professionals in atmospheric physics, meteorology and climatology, as well as the related disciplines of fluid dynamics, hydrology and oceanography.
Publisher: Cambridge University Press
ISBN: 1139502700
Category : Science
Languages : en
Pages : 363
Book Description
Numerical models have become essential tools in environmental science, particularly in weather forecasting and climate prediction. This book provides a comprehensive overview of the techniques used in these fields, with emphasis on the design of the most recent numerical models of the atmosphere. It presents a short history of numerical weather prediction and its evolution, before describing the various model equations and how to solve them numerically. It outlines the main elements of a meteorological forecast suite, and the theory is illustrated throughout with practical examples of operational models and parameterizations of physical processes. This book is founded on the author's many years of experience, as a scientist at Météo-France and teaching university-level courses. It is a practical and accessible textbook for graduate courses and a handy resource for researchers and professionals in atmospheric physics, meteorology and climatology, as well as the related disciplines of fluid dynamics, hydrology and oceanography.
Proceedings of the Boeing Symposium on Turbulence
Author:
Publisher: CUP Archive
ISBN:
Category :
Languages : en
Pages : 496
Book Description
Publisher: CUP Archive
ISBN:
Category :
Languages : en
Pages : 496
Book Description
Spectral Numerical Weather Prediction Models
Author: Martin Ehrendorfer
Publisher: SIAM
ISBN: 1611971993
Category : Mathematics
Languages : en
Pages : 503
Book Description
This book provides a comprehensive overview of numerical weather prediction (NWP) focusing on the application of the spectral method in NWP models. The author illustrates the use of the spectral method in theory as well as in its application to building a full prototypical spectral NWP model, from the formulation of continuous model equations through development of their discretized forms to coded statements of the model. The author describes the implementation of a specific model - PEAK (Primitive-Equation Atmospheric Research Model Kernel) - to illustrate the steps needed to construct a global spectral NWP model. The book brings together all the spectral, time, and vertical discretization aspects relevant for such a model. It provides readers with information necessary to construct spectral NWP models; a self-contained, well-documented, coded spectral NWP model; and theoretical and practical exercises, some of which include solutions.
Publisher: SIAM
ISBN: 1611971993
Category : Mathematics
Languages : en
Pages : 503
Book Description
This book provides a comprehensive overview of numerical weather prediction (NWP) focusing on the application of the spectral method in NWP models. The author illustrates the use of the spectral method in theory as well as in its application to building a full prototypical spectral NWP model, from the formulation of continuous model equations through development of their discretized forms to coded statements of the model. The author describes the implementation of a specific model - PEAK (Primitive-Equation Atmospheric Research Model Kernel) - to illustrate the steps needed to construct a global spectral NWP model. The book brings together all the spectral, time, and vertical discretization aspects relevant for such a model. It provides readers with information necessary to construct spectral NWP models; a self-contained, well-documented, coded spectral NWP model; and theoretical and practical exercises, some of which include solutions.
Dynamic Meteorology
Author: P. Morel
Publisher: Springer Science & Business Media
ISBN: 9401025991
Category : Science
Languages : en
Pages : 629
Book Description
The development of numerical integration techniques and the pioneering efforts of Von Neumann and his associates at the Institute for Advanced Studies (Princeton) have spurred the renewed interest of many leading fluid dynamicists and meteorologists in the theory and numerical simulation of planetary atmosphere and oceans circulations. Their work during the last 15 years, now culminating in the Global Atmospheric Research Program, has led to the possibility of vastly improved weather forecasts as wei I as the development of a ful I fledged branch of the physical sciences: geophysical fluid dynamics. Simultaneously, great strides have been made in developing new instruments, operating from earth orbiting satel I ites, to powerful observe the meteorological phenomena and to determine the state of motion of the atmosphere. Centre National d'Etudes Spatiales (CNES) of France has very significantly contributed to this effort by developing the EOLE navigation and data collection satell ite, launched on 16 August 1971 to interrogate 500 instrumented platforms measuring meteorological para meters. It is fitting then, that CNES should have brought together lead ing scientists in the field of dynamic meteorology, to participate in its 1970 Summer School on Space Physics.
Publisher: Springer Science & Business Media
ISBN: 9401025991
Category : Science
Languages : en
Pages : 629
Book Description
The development of numerical integration techniques and the pioneering efforts of Von Neumann and his associates at the Institute for Advanced Studies (Princeton) have spurred the renewed interest of many leading fluid dynamicists and meteorologists in the theory and numerical simulation of planetary atmosphere and oceans circulations. Their work during the last 15 years, now culminating in the Global Atmospheric Research Program, has led to the possibility of vastly improved weather forecasts as wei I as the development of a ful I fledged branch of the physical sciences: geophysical fluid dynamics. Simultaneously, great strides have been made in developing new instruments, operating from earth orbiting satel I ites, to powerful observe the meteorological phenomena and to determine the state of motion of the atmosphere. Centre National d'Etudes Spatiales (CNES) of France has very significantly contributed to this effort by developing the EOLE navigation and data collection satell ite, launched on 16 August 1971 to interrogate 500 instrumented platforms measuring meteorological para meters. It is fitting then, that CNES should have brought together lead ing scientists in the field of dynamic meteorology, to participate in its 1970 Summer School on Space Physics.
An Introduction to Global Spectral Modeling
Author: T.N. Krishnamurti
Publisher: Springer Science & Business Media
ISBN: 0387302549
Category : Science
Languages : en
Pages : 328
Book Description
This is an introductory textbook on global spectral modeling designed for senior-level undergraduates and possibly for first-year graduate students. This text starts with an introduction to elementary finite-difference methods and moves on towards the gradual description of sophisticated dynamical and physical models in spherical coordinates. Computational aspects of the spectral transform method, the planetary boundary layer physics, the physics of precipitation processes in large-scale models, the radiative transfer including effects of diagnostic clouds and diurnal cycle, the surface energy balance over land and ocean, and the treatment of mountains are some issues that are addressed. The topic of model initialization includes the treatment of normal modes and physical processes. A concluding chapter covers the spectral energetics as a diagnostic tool for model evaluation. This revised second edition of the text also includes three additional chapters. Chapter 11 deals with the formulation of a regional spectral model for mesoscale modeling which uses a double Fourier expansion of data and model equations for its transform. Chapter 12 deals with ensemble modeling. This is a new and important area for numerical weather and climate prediction. Finally, yet another new area that has to do with adaptive observational strategies is included as Chapter 13. It foretells where data deficiencies may reside in model from an exploratory ensemble run of experiments and the spread of such forecasts.
Publisher: Springer Science & Business Media
ISBN: 0387302549
Category : Science
Languages : en
Pages : 328
Book Description
This is an introductory textbook on global spectral modeling designed for senior-level undergraduates and possibly for first-year graduate students. This text starts with an introduction to elementary finite-difference methods and moves on towards the gradual description of sophisticated dynamical and physical models in spherical coordinates. Computational aspects of the spectral transform method, the planetary boundary layer physics, the physics of precipitation processes in large-scale models, the radiative transfer including effects of diagnostic clouds and diurnal cycle, the surface energy balance over land and ocean, and the treatment of mountains are some issues that are addressed. The topic of model initialization includes the treatment of normal modes and physical processes. A concluding chapter covers the spectral energetics as a diagnostic tool for model evaluation. This revised second edition of the text also includes three additional chapters. Chapter 11 deals with the formulation of a regional spectral model for mesoscale modeling which uses a double Fourier expansion of data and model equations for its transform. Chapter 12 deals with ensemble modeling. This is a new and important area for numerical weather and climate prediction. Finally, yet another new area that has to do with adaptive observational strategies is included as Chapter 13. It foretells where data deficiencies may reside in model from an exploratory ensemble run of experiments and the spread of such forecasts.
Monthly Weather Review
Author:
Publisher:
ISBN:
Category : Meteorology
Languages : en
Pages : 564
Book Description
Publisher:
ISBN:
Category : Meteorology
Languages : en
Pages : 564
Book Description
Climate Change and Climate Modeling
Author: J. David Neelin
Publisher: Cambridge University Press
ISBN: 1139491377
Category : Science
Languages : en
Pages : 299
Book Description
Provides students with a solid foundation in climate science, with which to understand global warming, natural climate variations, and climate models. As climate models are one of our primary tools for predicting and adapting to climate change, it is vital we appreciate their strengths and limitations. Also key is understanding what aspects of climate science are well understood and where quantitative uncertainties arise. This textbook will inform the future users of climate models and the decision-makers of tomorrow by providing the depth they need, while requiring no background in atmospheric science and only basic calculus and physics. Developed from a course that the author teaches at UCLA, material has been extensively class-tested and with online resources of colour figures, Powerpoint slides, and problem sets, this is a complete package for students across all sciences wishing to gain a solid grounding in climate science.
Publisher: Cambridge University Press
ISBN: 1139491377
Category : Science
Languages : en
Pages : 299
Book Description
Provides students with a solid foundation in climate science, with which to understand global warming, natural climate variations, and climate models. As climate models are one of our primary tools for predicting and adapting to climate change, it is vital we appreciate their strengths and limitations. Also key is understanding what aspects of climate science are well understood and where quantitative uncertainties arise. This textbook will inform the future users of climate models and the decision-makers of tomorrow by providing the depth they need, while requiring no background in atmospheric science and only basic calculus and physics. Developed from a course that the author teaches at UCLA, material has been extensively class-tested and with online resources of colour figures, Powerpoint slides, and problem sets, this is a complete package for students across all sciences wishing to gain a solid grounding in climate science.
Dynamic Meteorology
Author: S. Panchev
Publisher: Springer Science & Business Media
ISBN: 940095221X
Category : Science
Languages : en
Pages : 376
Book Description
1. ABOUT THE DISCIPLINE 'DYNAMIC METEOROLOGY' The name 'dynamic meteorology' is traditional for designating a university course as well as the scientific branch of meteorology as a whole. While there is no need to abandon this name, it needs contemporary treatment and specifications in its definition. A synonym for it could be 'dynamics (more precisely, hydrodynamics or fluid dynamics) of the atmosphere'. It suggests the relationship of this discipline to general hydrodynamics and applied mathematics and its pronounced theoretical nature. Besides the atmosphere, however, our planet has another (liquid) envelope - the hydrosphere (world's ocean), which also concerns ocean dynamics and, therefore, it is necessary to define, from a unified standpoint, the subject and aims of the disciplines dealing with the dynamics of the processes which take place in both fluid spheres. Such a unified standpoint offers the so-called geophysical fluid dynamics. During the past few years this description is encountered quite often in scientific literature concerning the Earth as a planet. Obviously, a scientific branch or a science is created whose subject is our planet and the investigation methods are borrowed from classical fluid dynamics and applied mathematics, including the most recent numerical methods. As can be seen from its very suitable name, it is the dynamics of quite definite geophysical fluids (atmosphere, ocean and even the liquid inside of the Earth) and not of some abstract (often perfect) flUids, as in classical hydrodynamics.
Publisher: Springer Science & Business Media
ISBN: 940095221X
Category : Science
Languages : en
Pages : 376
Book Description
1. ABOUT THE DISCIPLINE 'DYNAMIC METEOROLOGY' The name 'dynamic meteorology' is traditional for designating a university course as well as the scientific branch of meteorology as a whole. While there is no need to abandon this name, it needs contemporary treatment and specifications in its definition. A synonym for it could be 'dynamics (more precisely, hydrodynamics or fluid dynamics) of the atmosphere'. It suggests the relationship of this discipline to general hydrodynamics and applied mathematics and its pronounced theoretical nature. Besides the atmosphere, however, our planet has another (liquid) envelope - the hydrosphere (world's ocean), which also concerns ocean dynamics and, therefore, it is necessary to define, from a unified standpoint, the subject and aims of the disciplines dealing with the dynamics of the processes which take place in both fluid spheres. Such a unified standpoint offers the so-called geophysical fluid dynamics. During the past few years this description is encountered quite often in scientific literature concerning the Earth as a planet. Obviously, a scientific branch or a science is created whose subject is our planet and the investigation methods are borrowed from classical fluid dynamics and applied mathematics, including the most recent numerical methods. As can be seen from its very suitable name, it is the dynamics of quite definite geophysical fluids (atmosphere, ocean and even the liquid inside of the Earth) and not of some abstract (often perfect) flUids, as in classical hydrodynamics.
Four-Dimensional Model Assimilation of Data
Author: National Research Council
Publisher: National Academies Press
ISBN: 0309045363
Category : Science
Languages : en
Pages : 89
Book Description
This volume explores and evaluates the development, multiple applications, and usefulness of four-dimensional (space and time) model assimilations of data in the atmospheric and oceanographic sciences and projects their applicability to the earth sciences as a whole. Using the predictive power of geophysical laws incorporated in the general circulation model to produce a background field for comparison with incoming raw observations, the model assimilation process synthesizes diverse, temporarily inconsistent, and spatially incomplete observations from worldwide land, sea, and space data acquisition systems into a coherent representation of an evolving earth system. The book concludes that this subdiscipline is fundamental to the geophysical sciences and presents a basic strategy to extend the application of this subdiscipline to the earth sciences as a whole.
Publisher: National Academies Press
ISBN: 0309045363
Category : Science
Languages : en
Pages : 89
Book Description
This volume explores and evaluates the development, multiple applications, and usefulness of four-dimensional (space and time) model assimilations of data in the atmospheric and oceanographic sciences and projects their applicability to the earth sciences as a whole. Using the predictive power of geophysical laws incorporated in the general circulation model to produce a background field for comparison with incoming raw observations, the model assimilation process synthesizes diverse, temporarily inconsistent, and spatially incomplete observations from worldwide land, sea, and space data acquisition systems into a coherent representation of an evolving earth system. The book concludes that this subdiscipline is fundamental to the geophysical sciences and presents a basic strategy to extend the application of this subdiscipline to the earth sciences as a whole.
Recent Research in Numerical Methods at the National Meterorological Center
Author: Ronald D. McPherson
Publisher:
ISBN:
Category : Meteorological services
Languages : en
Pages : 44
Book Description
Publisher:
ISBN:
Category : Meteorological services
Languages : en
Pages : 44
Book Description