Author: Boele Lieuwe Jan Braaksma
Publisher: World Scientific
ISBN: 9789812381729
Category : Mathematics
Languages : en
Pages : 352
Book Description
Offers a snapshot concerning the state of the art in the areas of differential, difference and q-difference equations.
Proceedings of the Conference on Differential Equations and the Stokes Phenomenon
Author: Boele Lieuwe Jan Braaksma
Publisher: World Scientific
ISBN: 9789812381729
Category : Mathematics
Languages : en
Pages : 352
Book Description
Offers a snapshot concerning the state of the art in the areas of differential, difference and q-difference equations.
Publisher: World Scientific
ISBN: 9789812381729
Category : Mathematics
Languages : en
Pages : 352
Book Description
Offers a snapshot concerning the state of the art in the areas of differential, difference and q-difference equations.
Differential Equations and the Stokes Phenomenon
Author: B. L. J. BRAAKSMA
Publisher:
ISBN: 9789812776549
Category : Differential equations
Languages : en
Pages :
Book Description
This volume is the record of a workshop on differential equations and the Stokes phenomenon, held in May 2001 at the University of Groningen. It contains expanded versions of most of the lectures given at the workshop. To a large extent, both the workshop and the book may be regarded as a sequel to a conference held in Groningen in 1995 which resulted in the book The Stokes Phenomenon and Hilbert's 16th Problem (B L J Braaksma, G K Immink and M van der Put, editors), also published by World Scientific (1996). Both books offer a snapshot concerning the state of the art in the areas of different.
Publisher:
ISBN: 9789812776549
Category : Differential equations
Languages : en
Pages :
Book Description
This volume is the record of a workshop on differential equations and the Stokes phenomenon, held in May 2001 at the University of Groningen. It contains expanded versions of most of the lectures given at the workshop. To a large extent, both the workshop and the book may be regarded as a sequel to a conference held in Groningen in 1995 which resulted in the book The Stokes Phenomenon and Hilbert's 16th Problem (B L J Braaksma, G K Immink and M van der Put, editors), also published by World Scientific (1996). Both books offer a snapshot concerning the state of the art in the areas of different.
The Stokes Phenomenon And Hilbert's 16th Problem
Author: B L J Braaksma
Publisher: World Scientific
ISBN: 9814548081
Category :
Languages : en
Pages : 342
Book Description
The 16th Problem of Hilbert is one of the most famous remaining unsolved problems of mathematics. It concerns whether a polynomial vector field on the plane has a finite number of limit cycles. There is a strong connection with divergent solutions of differential equations, where a central role is played by the Stokes Phenomenon, the change in asymptotic behaviour of the solutions in different sectors of the complex plane.The contributions to these proceedings survey both of these themes, including historical and modern theoretical points of view. Topics covered include the Riemann-Hilbert problem, Painleve equations, nonlinear Stokes phenomena, and the inverse Galois problem.
Publisher: World Scientific
ISBN: 9814548081
Category :
Languages : en
Pages : 342
Book Description
The 16th Problem of Hilbert is one of the most famous remaining unsolved problems of mathematics. It concerns whether a polynomial vector field on the plane has a finite number of limit cycles. There is a strong connection with divergent solutions of differential equations, where a central role is played by the Stokes Phenomenon, the change in asymptotic behaviour of the solutions in different sectors of the complex plane.The contributions to these proceedings survey both of these themes, including historical and modern theoretical points of view. Topics covered include the Riemann-Hilbert problem, Painleve equations, nonlinear Stokes phenomena, and the inverse Galois problem.
Dynamical Systems And Related Topics - Proceedings Of The International Conference
Author: K Shiraiwa
Publisher: World Scientific
ISBN: 9814569194
Category :
Languages : en
Pages : 642
Book Description
This volume contains the proceedings of a satellite conference of the 1990 International Congress of Mathematicians. The main topics presented are mathematical theory of dynamical systems, complex dynamical systems, ergodic theory, chaos, and applications.
Publisher: World Scientific
ISBN: 9814569194
Category :
Languages : en
Pages : 642
Book Description
This volume contains the proceedings of a satellite conference of the 1990 International Congress of Mathematicians. The main topics presented are mathematical theory of dynamical systems, complex dynamical systems, ergodic theory, chaos, and applications.
International Conference on Differential Equations
Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 341
Book Description
Publisher:
ISBN:
Category :
Languages : en
Pages : 341
Book Description
Symmetries and Related Topics in Differential and Difference Equations
Author: David Blázquez-Sanz
Publisher: American Mathematical Soc.
ISBN: 0821868721
Category : Mathematics
Languages : en
Pages : 178
Book Description
The papers collected here discuss topics such as Lie symmetries, equivalence transformations and differential invariants, group theoretical methods in linear equations, and the development of some geometrical methods in theoretical physics. The reader will find new results in symmetries of differential and difference equations, applications in classical and quantum mechanics, two fundamental problems of theoretical mechanics, and the mathematical nature of time in Lagrangian mechanics.
Publisher: American Mathematical Soc.
ISBN: 0821868721
Category : Mathematics
Languages : en
Pages : 178
Book Description
The papers collected here discuss topics such as Lie symmetries, equivalence transformations and differential invariants, group theoretical methods in linear equations, and the development of some geometrical methods in theoretical physics. The reader will find new results in symmetries of differential and difference equations, applications in classical and quantum mechanics, two fundamental problems of theoretical mechanics, and the mathematical nature of time in Lagrangian mechanics.
Analyzable Functions and Applications
Author: Ovidiu Costin
Publisher: American Mathematical Soc.
ISBN: 0821834193
Category : Mathematics
Languages : en
Pages : 384
Book Description
The theory of analyzable functions is a technique used to study a wide class of asymptotic expansion methods and their applications in analysis, difference and differential equations, partial differential equations and other areas of mathematics. Key ideas in the theory of analyzable functions were laid out by Euler, Cauchy, Stokes, Hardy, E. Borel, and others. Then in the early 1980s, this theory took a great leap forward with the work of J. Ecalle. Similar techniques and conceptsin analysis, logic, applied mathematics and surreal number theory emerged at essentially the same time and developed rapidly through the 1990s. The links among various approaches soon became apparent and this body of ideas is now recognized as a field of its own with numerous applications. Thisvolume stemmed from the International Workshop on Analyzable Functions and Applications held in Edinburgh (Scotland). The contributed articles, written by many leading experts, are suitable for graduate students and researchers interested in asymptotic methods.
Publisher: American Mathematical Soc.
ISBN: 0821834193
Category : Mathematics
Languages : en
Pages : 384
Book Description
The theory of analyzable functions is a technique used to study a wide class of asymptotic expansion methods and their applications in analysis, difference and differential equations, partial differential equations and other areas of mathematics. Key ideas in the theory of analyzable functions were laid out by Euler, Cauchy, Stokes, Hardy, E. Borel, and others. Then in the early 1980s, this theory took a great leap forward with the work of J. Ecalle. Similar techniques and conceptsin analysis, logic, applied mathematics and surreal number theory emerged at essentially the same time and developed rapidly through the 1990s. The links among various approaches soon became apparent and this body of ideas is now recognized as a field of its own with numerous applications. Thisvolume stemmed from the International Workshop on Analyzable Functions and Applications held in Edinburgh (Scotland). The contributed articles, written by many leading experts, are suitable for graduate students and researchers interested in asymptotic methods.
ICM-90 Satellite Conference Proceedings
Author: Masaki Kashiwara
Publisher: Springer Science & Business Media
ISBN: 4431681701
Category : Mathematics
Languages : en
Pages : 324
Book Description
The 1990 Hayashibara Forum, "the International Conference on Special Functions", was held at Fujisaki Institute, Hayashibara Biochemical Laboratories, Inc., Okayama, Japan for five days (August 16-20, 1990). This volume is the proceedings for that meeting. On January 14,1985, Heisuke Hironaka and Ken Hayashibara, the president of Chair man, Board of Trustees, Hayashibara Foundation, met and decided to have an international conference on mathematics in the summer of 1990. This was pushed forward by Kiyosi Ito, who proposed "Special functions" as the theme of the conference. He also asked the present editors to join in the organizing committee of the Hayashibara Forum, 1990. On May 13, 1989 the organizing committee sent letters to major Japanese mathemat ical institutions asking their members to give suggestions about whom it should invite. Receiving the replies, the organizing committee decided the invited speakers, and sent invitation letters to them, in which it was written that "Special functions have been created and explored to describe scientific and mathematical phenomena. Trigonometric functions give the relation of angle to length. Riemann's zeta function was invented in order to describe the prime number distribution. Legendre's spherical functions and Bessel's functions were born in connection with the eigenvalue problems for partial differential equations.
Publisher: Springer Science & Business Media
ISBN: 4431681701
Category : Mathematics
Languages : en
Pages : 324
Book Description
The 1990 Hayashibara Forum, "the International Conference on Special Functions", was held at Fujisaki Institute, Hayashibara Biochemical Laboratories, Inc., Okayama, Japan for five days (August 16-20, 1990). This volume is the proceedings for that meeting. On January 14,1985, Heisuke Hironaka and Ken Hayashibara, the president of Chair man, Board of Trustees, Hayashibara Foundation, met and decided to have an international conference on mathematics in the summer of 1990. This was pushed forward by Kiyosi Ito, who proposed "Special functions" as the theme of the conference. He also asked the present editors to join in the organizing committee of the Hayashibara Forum, 1990. On May 13, 1989 the organizing committee sent letters to major Japanese mathemat ical institutions asking their members to give suggestions about whom it should invite. Receiving the replies, the organizing committee decided the invited speakers, and sent invitation letters to them, in which it was written that "Special functions have been created and explored to describe scientific and mathematical phenomena. Trigonometric functions give the relation of angle to length. Riemann's zeta function was invented in order to describe the prime number distribution. Legendre's spherical functions and Bessel's functions were born in connection with the eigenvalue problems for partial differential equations.
Selected Works of Ellis Kolchin with Commentary
Author: Ellis Robert Kolchin
Publisher: American Mathematical Soc.
ISBN: 9780821805428
Category : Mathematics
Languages : en
Pages : 660
Book Description
The work of Joseph Fels Ritt and Ellis Kolchin in differential algebra paved the way for exciting new applications in constructive symbolic computation, differential Galois theory, the model theory of fields, and Diophantine geometry. This volume assembles Kolchin's mathematical papers, contributing solidly to the archive on construction of modern differential algebra. This collection of Kolchin's clear and comprehensive papers--in themselves constituting a history of the subject--is an invaluable aid to the student of differential algebra. In 1910, Ritt created a theory of algebraic differential equations modeled not on the existing transcendental methods of Lie, but rather on the new algebra being developed by E. Noether and B. van der Waerden. Building on Ritt's foundation, and deeply influenced by Weil and Chevalley, Kolchin opened up Ritt theory to modern algebraic geometry. In so doing, he led differential geometry in a new direction. By creating differential algebraic geometry and the theory of differential algebraic groups, Kolchin provided the foundation for a "new geometry" that has led to both a striking and an original approach to arithmetic algebraic geometry. Intriguing possibilities were introduced for a new language for nonlinear differential equations theory. The volume includes commentary by A. Borel, M. Singer, and B. Poizat. Also Buium and Cassidy trace the development of Kolchin's ideas, from his important early work on the differential Galois theory to his later groundbreaking results on the theory of differential algebraic geometry and differential algebraic groups. Commentaries are self-contained with numerous examples of various aspects of differential algebra and its applications. Central topics of Kolchin's work are discussed, presenting the history of differential algebra and exploring how his work grew from and transformed the work of Ritt. New directions of differential algebra are illustrated, outlining important current advances. Prerequisite to understanding the text is a background at the beginning graduate level in algebra, specifically commutative algebra, the theory of field extensions, and Galois theory.
Publisher: American Mathematical Soc.
ISBN: 9780821805428
Category : Mathematics
Languages : en
Pages : 660
Book Description
The work of Joseph Fels Ritt and Ellis Kolchin in differential algebra paved the way for exciting new applications in constructive symbolic computation, differential Galois theory, the model theory of fields, and Diophantine geometry. This volume assembles Kolchin's mathematical papers, contributing solidly to the archive on construction of modern differential algebra. This collection of Kolchin's clear and comprehensive papers--in themselves constituting a history of the subject--is an invaluable aid to the student of differential algebra. In 1910, Ritt created a theory of algebraic differential equations modeled not on the existing transcendental methods of Lie, but rather on the new algebra being developed by E. Noether and B. van der Waerden. Building on Ritt's foundation, and deeply influenced by Weil and Chevalley, Kolchin opened up Ritt theory to modern algebraic geometry. In so doing, he led differential geometry in a new direction. By creating differential algebraic geometry and the theory of differential algebraic groups, Kolchin provided the foundation for a "new geometry" that has led to both a striking and an original approach to arithmetic algebraic geometry. Intriguing possibilities were introduced for a new language for nonlinear differential equations theory. The volume includes commentary by A. Borel, M. Singer, and B. Poizat. Also Buium and Cassidy trace the development of Kolchin's ideas, from his important early work on the differential Galois theory to his later groundbreaking results on the theory of differential algebraic geometry and differential algebraic groups. Commentaries are self-contained with numerous examples of various aspects of differential algebra and its applications. Central topics of Kolchin's work are discussed, presenting the history of differential algebra and exploring how his work grew from and transformed the work of Ritt. New directions of differential algebra are illustrated, outlining important current advances. Prerequisite to understanding the text is a background at the beginning graduate level in algebra, specifically commutative algebra, the theory of field extensions, and Galois theory.
Complex Differential and Difference Equations
Author: Galina Filipuk
Publisher: Walter de Gruyter GmbH & Co KG
ISBN: 3110611422
Category : Mathematics
Languages : en
Pages : 474
Book Description
With a balanced combination of longer survey articles and shorter, peer-reviewed research-level presentations on the topic of differential and difference equations on the complex domain, this edited volume presents an up-to-date overview of areas such as WKB analysis, summability, resurgence, formal solutions, integrability, and several algebraic aspects of differential and difference equations.
Publisher: Walter de Gruyter GmbH & Co KG
ISBN: 3110611422
Category : Mathematics
Languages : en
Pages : 474
Book Description
With a balanced combination of longer survey articles and shorter, peer-reviewed research-level presentations on the topic of differential and difference equations on the complex domain, this edited volume presents an up-to-date overview of areas such as WKB analysis, summability, resurgence, formal solutions, integrability, and several algebraic aspects of differential and difference equations.