Author: Ivailo M. Mladenov
Publisher:
ISBN:
Category :
Languages : en
Pages : 357
Book Description
Geometry, Integrability and Quantization
Author: Ivailo M. Mladenov
Publisher:
ISBN:
Category :
Languages : en
Pages : 357
Book Description
Publisher:
ISBN:
Category :
Languages : en
Pages : 357
Book Description
A Mathematical Gift, III
Author: Koji Shiga
Publisher: American Mathematical Society
ISBN: 9780821832844
Category : Mathematics
Languages : en
Pages : 148
Book Description
This book brings the beauty and fun of mathematics to the classroom. It offers serious mathematics in a lively, reader-friendly style. Included are exercises and many figures illustrating the main concepts. The first chapter talks about the theory of manifolds. It includes discussion of smoothness, differentiability, and analyticity, the idea of local coordinates and coordinate transformation, and a detailed explanation of the Whitney imbedding theorem (both in weak and in strong form).The second chapter discusses the notion of the area of a figure on the plane and the volume of a solid body in space. It includes the proof of the Bolyai-Gerwien theorem about scissors-congruent polynomials and Dehn's solution of the Third Hilbert Problem. This is the third volume originating from a series of lectures given at Kyoto University (Japan). It is suitable for classroom use for high school mathematics teachers and for undergraduate mathematics courses in the sciences and liberal arts. The first and second volumes are available as Volume 19 and Volume 20 in the AMS series, ""Mathematical World"".
Publisher: American Mathematical Society
ISBN: 9780821832844
Category : Mathematics
Languages : en
Pages : 148
Book Description
This book brings the beauty and fun of mathematics to the classroom. It offers serious mathematics in a lively, reader-friendly style. Included are exercises and many figures illustrating the main concepts. The first chapter talks about the theory of manifolds. It includes discussion of smoothness, differentiability, and analyticity, the idea of local coordinates and coordinate transformation, and a detailed explanation of the Whitney imbedding theorem (both in weak and in strong form).The second chapter discusses the notion of the area of a figure on the plane and the volume of a solid body in space. It includes the proof of the Bolyai-Gerwien theorem about scissors-congruent polynomials and Dehn's solution of the Third Hilbert Problem. This is the third volume originating from a series of lectures given at Kyoto University (Japan). It is suitable for classroom use for high school mathematics teachers and for undergraduate mathematics courses in the sciences and liberal arts. The first and second volumes are available as Volume 19 and Volume 20 in the AMS series, ""Mathematical World"".
Geometry, integrability and quantization
Author: Ivaïla. M. Mladenov
Publisher:
ISBN: 9789549061826
Category : Geometric quantization
Languages : en
Pages : 314
Book Description
Publisher:
ISBN: 9789549061826
Category : Geometric quantization
Languages : en
Pages : 314
Book Description
The Problem of Time
Author: Edward Anderson
Publisher: Springer
ISBN: 3319588486
Category : Science
Languages : en
Pages : 917
Book Description
This book is a treatise on time and on background independence in physics. It first considers how time is conceived of in each accepted paradigm of physics: Newtonian, special relativity, quantum mechanics (QM) and general relativity (GR). Substantial differences are moreover uncovered between what is meant by time in QM and in GR. These differences jointly source the Problem of Time: Nine interlinked facets which arise upon attempting concurrent treatment of the QM and GR paradigms, as is required in particular for a background independent theory of quantum gravity. A sizeable proportion of current quantum gravity programs - e.g. geometrodynamical and loop quantum gravity approaches to quantum GR, quantum cosmology, supergravity and M-theory - are background independent in this sense. This book's foundational topic is thus furthermore of practical relevance in the ongoing development of quantum gravity programs. This book shows moreover that eight of the nine facets of the Problem of Time already occur upon entertaining background independence in classical (rather than quantum) physics. By this development, and interpreting shape theory as modelling background independence, this book further establishes background independence as a field of study. Background independent mechanics, as well as minisuperspace (spatially homogeneous) models of GR and perturbations thereabout are used to illustrate these points. As hitherto formulated, the different facets of the Problem of Time greatly interfere with each others' attempted resolutions. This book explains how, none the less, a local resolution of the Problem of Time can be arrived at after various reconceptualizations of the facets and reformulations of their mathematical implementation. Self-contained appendices on mathematical methods for basic and foundational quantum gravity are included. Finally, this book outlines how supergravity is refreshingly different from GR as a realization of background independence, and what background independence entails at the topological level and beyond.
Publisher: Springer
ISBN: 3319588486
Category : Science
Languages : en
Pages : 917
Book Description
This book is a treatise on time and on background independence in physics. It first considers how time is conceived of in each accepted paradigm of physics: Newtonian, special relativity, quantum mechanics (QM) and general relativity (GR). Substantial differences are moreover uncovered between what is meant by time in QM and in GR. These differences jointly source the Problem of Time: Nine interlinked facets which arise upon attempting concurrent treatment of the QM and GR paradigms, as is required in particular for a background independent theory of quantum gravity. A sizeable proportion of current quantum gravity programs - e.g. geometrodynamical and loop quantum gravity approaches to quantum GR, quantum cosmology, supergravity and M-theory - are background independent in this sense. This book's foundational topic is thus furthermore of practical relevance in the ongoing development of quantum gravity programs. This book shows moreover that eight of the nine facets of the Problem of Time already occur upon entertaining background independence in classical (rather than quantum) physics. By this development, and interpreting shape theory as modelling background independence, this book further establishes background independence as a field of study. Background independent mechanics, as well as minisuperspace (spatially homogeneous) models of GR and perturbations thereabout are used to illustrate these points. As hitherto formulated, the different facets of the Problem of Time greatly interfere with each others' attempted resolutions. This book explains how, none the less, a local resolution of the Problem of Time can be arrived at after various reconceptualizations of the facets and reformulations of their mathematical implementation. Self-contained appendices on mathematical methods for basic and foundational quantum gravity are included. Finally, this book outlines how supergravity is refreshingly different from GR as a realization of background independence, and what background independence entails at the topological level and beyond.
The Psychology of Group Perception
Author: Vincent Yzerbyt
Publisher: Psychology Press
ISBN: 9781841690612
Category : Family & Relationships
Languages : en
Pages : 510
Book Description
First Published in 2004. Routledge is an imprint of Taylor & Francis, an informa company.
Publisher: Psychology Press
ISBN: 9781841690612
Category : Family & Relationships
Languages : en
Pages : 510
Book Description
First Published in 2004. Routledge is an imprint of Taylor & Francis, an informa company.
Cones and Duality
Author: Charalambos D. Aliprantis
Publisher: American Mathematical Soc.
ISBN: 0821841467
Category : Mathematics
Languages : en
Pages : 298
Book Description
Ordered vector spaces and cones made their debut in mathematics at the beginning of the twentieth century. They were developed in parallel (but from a different perspective) with functional analysis and operator theory. Before the 1950s, ordered vector spaces appeared in the literature in a fragmented way. Their systematic study began around the world after 1950 mainly through the efforts of the Russian, Japanese, German, and Dutch schools. Since cones are being employed to solve optimization problems, the theory of ordered vector spaces is an indispensable tool for solving a variety of applied problems appearing in several diverse areas, such as engineering, econometrics, and the social sciences. For this reason this theory plays a prominent role not only in functional analysis but also in a wide range of applications. This is a book about a modern perspective on cones and ordered vector spaces. It includes material that has not been presented earlier in a monograph or a textbook. With many exercises of varying degrees of difficulty, the book is suitable for graduate courses. Most of the new topics currently discussed in the book have their origins in problems from economics and finance. Therefore, the book will be valuable to any researcher and graduate student who works in mathematics, engineering, economics, finance, and any other field that uses optimization techniques.
Publisher: American Mathematical Soc.
ISBN: 0821841467
Category : Mathematics
Languages : en
Pages : 298
Book Description
Ordered vector spaces and cones made their debut in mathematics at the beginning of the twentieth century. They were developed in parallel (but from a different perspective) with functional analysis and operator theory. Before the 1950s, ordered vector spaces appeared in the literature in a fragmented way. Their systematic study began around the world after 1950 mainly through the efforts of the Russian, Japanese, German, and Dutch schools. Since cones are being employed to solve optimization problems, the theory of ordered vector spaces is an indispensable tool for solving a variety of applied problems appearing in several diverse areas, such as engineering, econometrics, and the social sciences. For this reason this theory plays a prominent role not only in functional analysis but also in a wide range of applications. This is a book about a modern perspective on cones and ordered vector spaces. It includes material that has not been presented earlier in a monograph or a textbook. With many exercises of varying degrees of difficulty, the book is suitable for graduate courses. Most of the new topics currently discussed in the book have their origins in problems from economics and finance. Therefore, the book will be valuable to any researcher and graduate student who works in mathematics, engineering, economics, finance, and any other field that uses optimization techniques.
Algebraic Geometry and Number Theory
Author: victor ginzburg
Publisher: Springer Science & Business Media
ISBN: 0817645322
Category : Mathematics
Languages : en
Pages : 656
Book Description
This book represents a collection of invited papers by outstanding mathematicians in algebra, algebraic geometry, and number theory dedicated to Vladimir Drinfeld. Original research articles reflect the range of Drinfeld's work, and his profound contributions to the Langlands program, quantum groups, and mathematical physics are paid particular attention. These ten original articles by prominent mathematicians, dedicated to Drinfeld on the occasion of his 50th birthday, broadly reflect the range of Drinfeld's own interests in algebra, algebraic geometry, and number theory.
Publisher: Springer Science & Business Media
ISBN: 0817645322
Category : Mathematics
Languages : en
Pages : 656
Book Description
This book represents a collection of invited papers by outstanding mathematicians in algebra, algebraic geometry, and number theory dedicated to Vladimir Drinfeld. Original research articles reflect the range of Drinfeld's work, and his profound contributions to the Langlands program, quantum groups, and mathematical physics are paid particular attention. These ten original articles by prominent mathematicians, dedicated to Drinfeld on the occasion of his 50th birthday, broadly reflect the range of Drinfeld's own interests in algebra, algebraic geometry, and number theory.
Extension of Compact Operators
Author: Joram Lindenstrauss
Publisher: American Mathematical Soc.
ISBN: 0821812483
Category : Banach spaces
Languages : en
Pages : 116
Book Description
Publisher: American Mathematical Soc.
ISBN: 0821812483
Category : Banach spaces
Languages : en
Pages : 116
Book Description
The Cauchy Transform
Author: Joseph A. Cima
Publisher: American Mathematical Soc.
ISBN: 0821838717
Category : Mathematics
Languages : en
Pages : 286
Book Description
The Cauchy transform of a measure on the circle is a subject of both classical and current interest with a sizable literature. This book is a thorough, well-documented, and readable survey of this literature and includes full proofs of the main results of the subject. This book also covers more recent perturbation theory as covered by Clark, Poltoratski, and Aleksandrov and contains an in-depth treatment of Clark measures.
Publisher: American Mathematical Soc.
ISBN: 0821838717
Category : Mathematics
Languages : en
Pages : 286
Book Description
The Cauchy transform of a measure on the circle is a subject of both classical and current interest with a sizable literature. This book is a thorough, well-documented, and readable survey of this literature and includes full proofs of the main results of the subject. This book also covers more recent perturbation theory as covered by Clark, Poltoratski, and Aleksandrov and contains an in-depth treatment of Clark measures.
Circles Disturbed
Author: Apostolos Doxiadis
Publisher: Princeton University Press
ISBN: 1400842689
Category : Mathematics
Languages : en
Pages : 593
Book Description
Why narrative is essential to mathematics Circles Disturbed brings together important thinkers in mathematics, history, and philosophy to explore the relationship between mathematics and narrative. The book's title recalls the last words of the great Greek mathematician Archimedes before he was slain by a Roman soldier—"Don't disturb my circles"—words that seem to refer to two radically different concerns: that of the practical person living in the concrete world of reality, and that of the theoretician lost in a world of abstraction. Stories and theorems are, in a sense, the natural languages of these two worlds—stories representing the way we act and interact, and theorems giving us pure thought, distilled from the hustle and bustle of reality. Yet, though the voices of stories and theorems seem totally different, they share profound connections and similarities. A book unlike any other, Circles Disturbed delves into topics such as the way in which historical and biographical narratives shape our understanding of mathematics and mathematicians, the development of "myths of origins" in mathematics, the structure and importance of mathematical dreams, the role of storytelling in the formation of mathematical intuitions, the ways mathematics helps us organize the way we think about narrative structure, and much more. In addition to the editors, the contributors are Amir Alexander, David Corfield, Peter Galison, Timothy Gowers, Michael Harris, David Herman, Federica La Nave, G.E.R. Lloyd, Uri Margolin, Colin McLarty, Jan Christoph Meister, Arkady Plotnitsky, and Bernard Teissier.
Publisher: Princeton University Press
ISBN: 1400842689
Category : Mathematics
Languages : en
Pages : 593
Book Description
Why narrative is essential to mathematics Circles Disturbed brings together important thinkers in mathematics, history, and philosophy to explore the relationship between mathematics and narrative. The book's title recalls the last words of the great Greek mathematician Archimedes before he was slain by a Roman soldier—"Don't disturb my circles"—words that seem to refer to two radically different concerns: that of the practical person living in the concrete world of reality, and that of the theoretician lost in a world of abstraction. Stories and theorems are, in a sense, the natural languages of these two worlds—stories representing the way we act and interact, and theorems giving us pure thought, distilled from the hustle and bustle of reality. Yet, though the voices of stories and theorems seem totally different, they share profound connections and similarities. A book unlike any other, Circles Disturbed delves into topics such as the way in which historical and biographical narratives shape our understanding of mathematics and mathematicians, the development of "myths of origins" in mathematics, the structure and importance of mathematical dreams, the role of storytelling in the formation of mathematical intuitions, the ways mathematics helps us organize the way we think about narrative structure, and much more. In addition to the editors, the contributors are Amir Alexander, David Corfield, Peter Galison, Timothy Gowers, Michael Harris, David Herman, Federica La Nave, G.E.R. Lloyd, Uri Margolin, Colin McLarty, Jan Christoph Meister, Arkady Plotnitsky, and Bernard Teissier.