Author: Masato Shirasaki
Publisher: Springer
ISBN: 9812877967
Category : Science
Languages : en
Pages : 144
Book Description
In this book the applicability and the utility of two statistical approaches for understanding dark energy and dark matter with gravitational lensing measurement are introduced. For cosmological constraints on the nature of dark energy, morphological statistics called Minkowski functionals (MFs) to extract the non-Gaussian information of gravitational lensing are studied. Measuring lensing MFs from the Canada–France–Hawaii Telescope Lensing survey (CFHTLenS), the author clearly shows that MFs can be powerful statistics beyond the conventional approach with the two-point correlation function. Combined with the two-point correlation function, MFs can constrain the equation of state of dark energy with a precision level of approximately 3–4 % in upcoming surveys with sky coverage of 20,000 square degrees. On the topic of dark matter, the author studied the cross-correlation of gravitational lensing and the extragalactic gamma-ray background (EGB). Dark matter annihilation is among the potential contributors to the EGB. The cross-correlation is a powerful probe of signatures of dark matter annihilation, because both cosmic shear and gamma-ray emission originate directly from the same dark matter distribution in the universe. The first measurement of the cross-correlation using a real data set obtained from CFHTLenS and the Fermi Large Area Telescope was performed. Comparing the result with theoretical predictions, an independent constraint was placed on dark matter annihilation. Future lensing surveys will be useful to constrain on the canonical value of annihilation cross section for a wide range of mass of dark matter annihilation. Future lensing surveys will be useful to constrain on the canonical value of annihilation cross section for a wide range of mass of dark matter.
Probing Cosmic Dark Matter and Dark Energy with Weak Gravitational Lensing Statistics
Connecting Quarks with the Cosmos
Author: National Research Council
Publisher: National Academies Press
ISBN: 030917113X
Category : Science
Languages : en
Pages : 222
Book Description
Advances made by physicists in understanding matter, space, and time and by astronomers in understanding the universe as a whole have closely intertwined the question being asked about the universe at its two extremesâ€"the very large and the very small. This report identifies 11 key questions that have a good chance to be answered in the next decade. It urges that a new research strategy be created that brings to bear the techniques of both astronomy and sub-atomic physics in a cross-disciplinary way to address these questions. The report presents seven recommendations to facilitate the necessary research and development coordination. These recommendations identify key priorities for future scientific projects critical for realizing these scientific opportunities.
Publisher: National Academies Press
ISBN: 030917113X
Category : Science
Languages : en
Pages : 222
Book Description
Advances made by physicists in understanding matter, space, and time and by astronomers in understanding the universe as a whole have closely intertwined the question being asked about the universe at its two extremesâ€"the very large and the very small. This report identifies 11 key questions that have a good chance to be answered in the next decade. It urges that a new research strategy be created that brings to bear the techniques of both astronomy and sub-atomic physics in a cross-disciplinary way to address these questions. The report presents seven recommendations to facilitate the necessary research and development coordination. These recommendations identify key priorities for future scientific projects critical for realizing these scientific opportunities.
New Worlds, New Horizons in Astronomy and Astrophysics
Author: National Research Council
Publisher: National Academies Press
ISBN: 0309157994
Category : Science
Languages : en
Pages : 324
Book Description
Driven by discoveries, and enabled by leaps in technology and imagination, our understanding of the universe has changed dramatically during the course of the last few decades. The fields of astronomy and astrophysics are making new connections to physics, chemistry, biology, and computer science. Based on a broad and comprehensive survey of scientific opportunities, infrastructure, and organization in a national and international context, New Worlds, New Horizons in Astronomy and Astrophysics outlines a plan for ground- and space- based astronomy and astrophysics for the decade of the 2010's. Realizing these scientific opportunities is contingent upon maintaining and strengthening the foundations of the research enterprise including technological development, theory, computation and data handling, laboratory experiments, and human resources. New Worlds, New Horizons in Astronomy and Astrophysics proposes enhancing innovative but moderate-cost programs in space and on the ground that will enable the community to respond rapidly and flexibly to new scientific discoveries. The book recommends beginning construction on survey telescopes in space and on the ground to investigate the nature of dark energy, as well as the next generation of large ground-based giant optical telescopes and a new class of space-based gravitational observatory to observe the merging of distant black holes and precisely test theories of gravity. New Worlds, New Horizons in Astronomy and Astrophysics recommends a balanced and executable program that will support research surrounding the most profound questions about the cosmos. The discoveries ahead will facilitate the search for habitable planets, shed light on dark energy and dark matter, and aid our understanding of the history of the universe and how the earliest stars and galaxies formed. The book is a useful resource for agencies supporting the field of astronomy and astrophysics, the Congressional committees with jurisdiction over those agencies, the scientific community, and the public.
Publisher: National Academies Press
ISBN: 0309157994
Category : Science
Languages : en
Pages : 324
Book Description
Driven by discoveries, and enabled by leaps in technology and imagination, our understanding of the universe has changed dramatically during the course of the last few decades. The fields of astronomy and astrophysics are making new connections to physics, chemistry, biology, and computer science. Based on a broad and comprehensive survey of scientific opportunities, infrastructure, and organization in a national and international context, New Worlds, New Horizons in Astronomy and Astrophysics outlines a plan for ground- and space- based astronomy and astrophysics for the decade of the 2010's. Realizing these scientific opportunities is contingent upon maintaining and strengthening the foundations of the research enterprise including technological development, theory, computation and data handling, laboratory experiments, and human resources. New Worlds, New Horizons in Astronomy and Astrophysics proposes enhancing innovative but moderate-cost programs in space and on the ground that will enable the community to respond rapidly and flexibly to new scientific discoveries. The book recommends beginning construction on survey telescopes in space and on the ground to investigate the nature of dark energy, as well as the next generation of large ground-based giant optical telescopes and a new class of space-based gravitational observatory to observe the merging of distant black holes and precisely test theories of gravity. New Worlds, New Horizons in Astronomy and Astrophysics recommends a balanced and executable program that will support research surrounding the most profound questions about the cosmos. The discoveries ahead will facilitate the search for habitable planets, shed light on dark energy and dark matter, and aid our understanding of the history of the universe and how the earliest stars and galaxies formed. The book is a useful resource for agencies supporting the field of astronomy and astrophysics, the Congressional committees with jurisdiction over those agencies, the scientific community, and the public.
Dark Matter and Dark Energy
Author: Sabino Matarrese
Publisher: Springer Science & Business Media
ISBN: 9048186854
Category : Science
Languages : en
Pages : 413
Book Description
This book brings together reviews from leading international authorities on the developments in the study of dark matter and dark energy, as seen from both their cosmological and particle physics side. Studying the physical and astrophysical properties of the dark components of our Universe is a crucial step towards the ultimate goal of unveiling their nature. The work developed from a doctoral school sponsored by the Italian Society of General Relativity and Gravitation. The book starts with a concise introduction to the standard cosmological model, as well as with a presentation of the theory of linear perturbations around a homogeneous and isotropic background. It covers the particle physics and cosmological aspects of dark matter and (dynamical) dark energy, including a discussion of how modified theories of gravity could provide a possible candidate for dark energy. A detailed presentation is also given of the possible ways of testing the theory in terms of cosmic microwave background, galaxy redshift surveys and weak gravitational lensing observations. Included is a chapter reviewing extensively the direct and indirect methods of detection of the hypothetical dark matter particles. Also included is a self-contained introduction to the techniques and most important results of numerical (e.g. N-body) simulations in cosmology. " This volume will be useful to researchers, PhD and graduate students in Astrophysics, Cosmology Physics and Mathematics, who are interested in cosmology, dark matter and dark energy.
Publisher: Springer Science & Business Media
ISBN: 9048186854
Category : Science
Languages : en
Pages : 413
Book Description
This book brings together reviews from leading international authorities on the developments in the study of dark matter and dark energy, as seen from both their cosmological and particle physics side. Studying the physical and astrophysical properties of the dark components of our Universe is a crucial step towards the ultimate goal of unveiling their nature. The work developed from a doctoral school sponsored by the Italian Society of General Relativity and Gravitation. The book starts with a concise introduction to the standard cosmological model, as well as with a presentation of the theory of linear perturbations around a homogeneous and isotropic background. It covers the particle physics and cosmological aspects of dark matter and (dynamical) dark energy, including a discussion of how modified theories of gravity could provide a possible candidate for dark energy. A detailed presentation is also given of the possible ways of testing the theory in terms of cosmic microwave background, galaxy redshift surveys and weak gravitational lensing observations. Included is a chapter reviewing extensively the direct and indirect methods of detection of the hypothetical dark matter particles. Also included is a self-contained introduction to the techniques and most important results of numerical (e.g. N-body) simulations in cosmology. " This volume will be useful to researchers, PhD and graduate students in Astrophysics, Cosmology Physics and Mathematics, who are interested in cosmology, dark matter and dark energy.
Gravitational Lensing: Strong, Weak and Micro
Author: Peter Schneider
Publisher: Springer Science & Business Media
ISBN: 3540303103
Category : Science
Languages : en
Pages : 565
Book Description
The observation, in 1919 by A.S. Eddington and collaborators, of the gra- tational de?ection of light by the Sun proved one of the many predictions of Einstein’s Theory of General Relativity: The Sun was the ?rst example of a gravitational lens. In 1936, Albert Einstein published an article in which he suggested - ing stars as gravitational lenses. A year later, Fritz Zwicky pointed out that galaxies would act as lenses much more likely than stars, and also gave a list of possible applications, as a means to determine the dark matter content of galaxies and clusters of galaxies. It was only in 1979 that the ?rst example of an extragalactic gravitational lens was provided by the observation of the distant quasar QSO 0957+0561, by D. Walsh, R.F. Carswell, and R.J. Weymann. A few years later, the ?rst lens showing images in the form of arcs was detected. The theory, observations, and applications of gravitational lensing cons- tute one of the most rapidly growing branches of astrophysics. The gravi- tional de?ection of light generated by mass concentrations along a light path producesmagni?cation,multiplicity,anddistortionofimages,anddelaysp- ton propagation from one line of sight relative to another. The huge amount of scienti?c work produced over the last decade on gravitational lensing has clearly revealed its already substantial and wide impact, and its potential for future astrophysical applications.
Publisher: Springer Science & Business Media
ISBN: 3540303103
Category : Science
Languages : en
Pages : 565
Book Description
The observation, in 1919 by A.S. Eddington and collaborators, of the gra- tational de?ection of light by the Sun proved one of the many predictions of Einstein’s Theory of General Relativity: The Sun was the ?rst example of a gravitational lens. In 1936, Albert Einstein published an article in which he suggested - ing stars as gravitational lenses. A year later, Fritz Zwicky pointed out that galaxies would act as lenses much more likely than stars, and also gave a list of possible applications, as a means to determine the dark matter content of galaxies and clusters of galaxies. It was only in 1979 that the ?rst example of an extragalactic gravitational lens was provided by the observation of the distant quasar QSO 0957+0561, by D. Walsh, R.F. Carswell, and R.J. Weymann. A few years later, the ?rst lens showing images in the form of arcs was detected. The theory, observations, and applications of gravitational lensing cons- tute one of the most rapidly growing branches of astrophysics. The gravi- tional de?ection of light generated by mass concentrations along a light path producesmagni?cation,multiplicity,anddistortionofimages,anddelaysp- ton propagation from one line of sight relative to another. The huge amount of scienti?c work produced over the last decade on gravitational lensing has clearly revealed its already substantial and wide impact, and its potential for future astrophysical applications.
Dark Energy
Author: Luca Amendola
Publisher: Cambridge University Press
ISBN: 0521516005
Category : Science
Languages : en
Pages : 507
Book Description
Introducing the theoretical ideas, observational methods and results in dark energy, this textbook is a thorough introduction to dark energy for graduate courses.
Publisher: Cambridge University Press
ISBN: 0521516005
Category : Science
Languages : en
Pages : 507
Book Description
Introducing the theoretical ideas, observational methods and results in dark energy, this textbook is a thorough introduction to dark energy for graduate courses.
Cosmological Probes of Light Relics
Author: Benjamin Wallisch
Publisher: Springer Nature
ISBN: 3030310981
Category : Science
Languages : en
Pages : 229
Book Description
The wealth of recent cosmic microwave background and large-scale structure data has transformed the field of cosmology. These observations have not only become precise enough to answer questions about the universe on the largest scales, but also to address puzzles in the microscopic description of Nature. This thesis investigates new ways of probing the early universe, the properties of neutrinos and the possible existence of other light particles. In particular, based on detailed theoretical insights and novel analyses, new evidence for the cosmic neutrino background is found in the distribution of galaxies and in cosmic microwave background data. This tests the Standard Model of particle physics and the universe back to a time when it was about one second old. Furthermore, it is demonstrated that future observations will be capable of probing physics beyond the Standard Model since they can achieve a particular target which would either allow the detection of any light particles that have ever been in thermal equilibrium or imply strong bounds on their properties.
Publisher: Springer Nature
ISBN: 3030310981
Category : Science
Languages : en
Pages : 229
Book Description
The wealth of recent cosmic microwave background and large-scale structure data has transformed the field of cosmology. These observations have not only become precise enough to answer questions about the universe on the largest scales, but also to address puzzles in the microscopic description of Nature. This thesis investigates new ways of probing the early universe, the properties of neutrinos and the possible existence of other light particles. In particular, based on detailed theoretical insights and novel analyses, new evidence for the cosmic neutrino background is found in the distribution of galaxies and in cosmic microwave background data. This tests the Standard Model of particle physics and the universe back to a time when it was about one second old. Furthermore, it is demonstrated that future observations will be capable of probing physics beyond the Standard Model since they can achieve a particular target which would either allow the detection of any light particles that have ever been in thermal equilibrium or imply strong bounds on their properties.
Modern Cosmology
Author: Scott Dodelson
Publisher: Academic Press
ISBN: 0122191412
Category : Science
Languages : en
Pages : 462
Book Description
An advanced text for senior undergraduates, graduate students and physical scientists in fields outside cosmology. This is a self-contained book focusing on the linear theory of the evolution of density perturbations in the universe, and the anisotropiesin the cosmic microwave background.
Publisher: Academic Press
ISBN: 0122191412
Category : Science
Languages : en
Pages : 462
Book Description
An advanced text for senior undergraduates, graduate students and physical scientists in fields outside cosmology. This is a self-contained book focusing on the linear theory of the evolution of density perturbations in the universe, and the anisotropiesin the cosmic microwave background.
Principles of Gravitational Lensing
Author: Arthur B. Congdon
Publisher: Springer
ISBN: 303002122X
Category : Science
Languages : en
Pages : 292
Book Description
This textbook provides an introduction to gravitational lensing, which has become an invaluable tool in modern astrophysics, with applications that range from finding planets orbiting distant stars to understanding how dark matter and dark energy conspired to form the cosmic structures we see today. Principles of Gravitational Lensing begins with Einstein’s prediction that gravity bends light, and shows how that fundamental idea has spawned a rich field of study over the past century. The gravitational deflection of light was first detected by Eddington during a solar eclipse in May 1919, launching Einstein and his theory of relativity into public view. Yet the possibility of using the phenomenon to unlock mysteries of the Universe seemed remote, given the technology of the day. Theoretical work was carried out sporadically over the next six decades, but only with the discovery of the system Q0957+561 in 1979 was gravitational lensing transformed from a curiosity of general relativity into a practical observational tool. This book describes how the three subfields known as strong lensing, weak lensing, and microlensing have grown independently but become increasingly intertwined. Drawing on their research experience, Congdon and Keeton begin with the basic physics of light bending, then present the mathematical foundations of gravitational lensing, building up to current research topics in a clear and systematic way. Relevant background material from physics and mathematics is included, making the book self-contained. The derivations and explanations are supplemented by exercises designed to help students master the theoretical concepts as well as the methods that drive current research. An extensive bibliography guides those wishing to delve more deeply into particular areas of interest. Principles of Gravitational Lensing is ideal for advanced students and seasoned researchers looking to penetrate this thriving subject and even contribute research of their own.
Publisher: Springer
ISBN: 303002122X
Category : Science
Languages : en
Pages : 292
Book Description
This textbook provides an introduction to gravitational lensing, which has become an invaluable tool in modern astrophysics, with applications that range from finding planets orbiting distant stars to understanding how dark matter and dark energy conspired to form the cosmic structures we see today. Principles of Gravitational Lensing begins with Einstein’s prediction that gravity bends light, and shows how that fundamental idea has spawned a rich field of study over the past century. The gravitational deflection of light was first detected by Eddington during a solar eclipse in May 1919, launching Einstein and his theory of relativity into public view. Yet the possibility of using the phenomenon to unlock mysteries of the Universe seemed remote, given the technology of the day. Theoretical work was carried out sporadically over the next six decades, but only with the discovery of the system Q0957+561 in 1979 was gravitational lensing transformed from a curiosity of general relativity into a practical observational tool. This book describes how the three subfields known as strong lensing, weak lensing, and microlensing have grown independently but become increasingly intertwined. Drawing on their research experience, Congdon and Keeton begin with the basic physics of light bending, then present the mathematical foundations of gravitational lensing, building up to current research topics in a clear and systematic way. Relevant background material from physics and mathematics is included, making the book self-contained. The derivations and explanations are supplemented by exercises designed to help students master the theoretical concepts as well as the methods that drive current research. An extensive bibliography guides those wishing to delve more deeply into particular areas of interest. Principles of Gravitational Lensing is ideal for advanced students and seasoned researchers looking to penetrate this thriving subject and even contribute research of their own.
A Philosophical Approach to MOND
Author: David Merritt
Publisher: Cambridge University Press
ISBN: 1108665683
Category : Science
Languages : en
Pages : 285
Book Description
Dark matter is a fundamental component of the standard cosmological model, but in spite of four decades of increasingly sensitive searches, no-one has yet detected a single dark-matter particle in the laboratory. An alternative cosmological paradigm exists: MOND (Modified Newtonian Dynamics). Observations explained in the standard model by postulating dark matter are described in MOND by proposing a modification of Newton's laws of motion. Both MOND and the standard model have had successes and failures – but only MOND has repeatedly predicted observational facts in advance of their discovery. In this volume, David Merritt outlines why such predictions are considered by many philosophers of science to be the 'gold standard' when it comes to judging a theory's validity. In a world where the standard model receives most attention, the author applies criteria from the philosophy of science to assess, in a systematic way, the viability of this alternative cosmological paradigm.
Publisher: Cambridge University Press
ISBN: 1108665683
Category : Science
Languages : en
Pages : 285
Book Description
Dark matter is a fundamental component of the standard cosmological model, but in spite of four decades of increasingly sensitive searches, no-one has yet detected a single dark-matter particle in the laboratory. An alternative cosmological paradigm exists: MOND (Modified Newtonian Dynamics). Observations explained in the standard model by postulating dark matter are described in MOND by proposing a modification of Newton's laws of motion. Both MOND and the standard model have had successes and failures – but only MOND has repeatedly predicted observational facts in advance of their discovery. In this volume, David Merritt outlines why such predictions are considered by many philosophers of science to be the 'gold standard' when it comes to judging a theory's validity. In a world where the standard model receives most attention, the author applies criteria from the philosophy of science to assess, in a systematic way, the viability of this alternative cosmological paradigm.