Author: Marek Capinski
Publisher: Springer Science & Business Media
ISBN: 0387216596
Category : Mathematics
Languages : en
Pages : 262
Book Description
This book of problems is designed to challenge students learning probability. Each chapter is divided into three parts: Problems, Hints, and Solutions. All Problems sections include expository material, making the book self-contained. Definitions and statements of important results are interlaced with relevant problems. The only prerequisite is basic algebra and calculus.
Probability Through Problems
Author: Marek Capinski
Publisher: Springer Science & Business Media
ISBN: 0387216596
Category : Mathematics
Languages : en
Pages : 262
Book Description
This book of problems is designed to challenge students learning probability. Each chapter is divided into three parts: Problems, Hints, and Solutions. All Problems sections include expository material, making the book self-contained. Definitions and statements of important results are interlaced with relevant problems. The only prerequisite is basic algebra and calculus.
Publisher: Springer Science & Business Media
ISBN: 0387216596
Category : Mathematics
Languages : en
Pages : 262
Book Description
This book of problems is designed to challenge students learning probability. Each chapter is divided into three parts: Problems, Hints, and Solutions. All Problems sections include expository material, making the book self-contained. Definitions and statements of important results are interlaced with relevant problems. The only prerequisite is basic algebra and calculus.
Problems in Probability
Author: Albert N. Shiryaev
Publisher: Springer Science & Business Media
ISBN: 1461436885
Category : Mathematics
Languages : en
Pages : 432
Book Description
For the first two editions of the book Probability (GTM 95), each chapter included a comprehensive and diverse set of relevant exercises. While the work on the third edition was still in progress, it was decided that it would be more appropriate to publish a separate book that would comprise all of the exercises from previous editions, in addition to many new exercises. Most of the material in this book consists of exercises created by Shiryaev, collected and compiled over the course of many years while working on many interesting topics. Many of the exercises resulted from discussions that took place during special seminars for graduate and undergraduate students. Many of the exercises included in the book contain helpful hints and other relevant information. Lastly, the author has included an appendix at the end of the book that contains a summary of the main results, notation and terminology from Probability Theory that are used throughout the present book. This Appendix also contains additional material from Combinatorics, Potential Theory and Markov Chains, which is not covered in the book, but is nevertheless needed for many of the exercises included here.
Publisher: Springer Science & Business Media
ISBN: 1461436885
Category : Mathematics
Languages : en
Pages : 432
Book Description
For the first two editions of the book Probability (GTM 95), each chapter included a comprehensive and diverse set of relevant exercises. While the work on the third edition was still in progress, it was decided that it would be more appropriate to publish a separate book that would comprise all of the exercises from previous editions, in addition to many new exercises. Most of the material in this book consists of exercises created by Shiryaev, collected and compiled over the course of many years while working on many interesting topics. Many of the exercises resulted from discussions that took place during special seminars for graduate and undergraduate students. Many of the exercises included in the book contain helpful hints and other relevant information. Lastly, the author has included an appendix at the end of the book that contains a summary of the main results, notation and terminology from Probability Theory that are used throughout the present book. This Appendix also contains additional material from Combinatorics, Potential Theory and Markov Chains, which is not covered in the book, but is nevertheless needed for many of the exercises included here.
Problems in Probability Theory, Mathematical Statistics and Theory of Random Functions
Author: A. A. Sveshnikov
Publisher: Courier Corporation
ISBN: 0486137562
Category : Mathematics
Languages : en
Pages : 516
Book Description
Approximately 1,000 problems — with answers and solutions included at the back of the book — illustrate such topics as random events, random variables, limit theorems, Markov processes, and much more.
Publisher: Courier Corporation
ISBN: 0486137562
Category : Mathematics
Languages : en
Pages : 516
Book Description
Approximately 1,000 problems — with answers and solutions included at the back of the book — illustrate such topics as random events, random variables, limit theorems, Markov processes, and much more.
Exercises in Probability
Author: T. Cacoullos
Publisher: Springer Science & Business Media
ISBN: 1461245265
Category : Mathematics
Languages : en
Pages : 251
Book Description
The author, the founder of the Greek Statistical Institute, has based this book on the two volumes of his Greek edition which has been used by over ten thousand students during the past fifteen years. It can serve as a companion text for an introductory or intermediate level probability course. Those will benefit most who have a good grasp of calculus, yet, many others, with less formal mathematical background can also benefit from the large variety of solved problems ranging from classical combinatorial problems to limit theorems and the law of iterated logarithms. It contains 329 problems with solutions as well as an addendum of over 160 exercises and certain complements of theory and problems.
Publisher: Springer Science & Business Media
ISBN: 1461245265
Category : Mathematics
Languages : en
Pages : 251
Book Description
The author, the founder of the Greek Statistical Institute, has based this book on the two volumes of his Greek edition which has been used by over ten thousand students during the past fifteen years. It can serve as a companion text for an introductory or intermediate level probability course. Those will benefit most who have a good grasp of calculus, yet, many others, with less formal mathematical background can also benefit from the large variety of solved problems ranging from classical combinatorial problems to limit theorems and the law of iterated logarithms. It contains 329 problems with solutions as well as an addendum of over 160 exercises and certain complements of theory and problems.
Classic Problems of Probability
Author: Prakash Gorroochurn
Publisher: John Wiley & Sons
ISBN: 1118063252
Category : Mathematics
Languages : en
Pages : 341
Book Description
Winner of the 2012 PROSE Award for Mathematics from The American Publishers Awards for Professional and Scholarly Excellence. "A great book, one that I will certainly add to my personal library." —Paul J. Nahin, Professor Emeritus of Electrical Engineering, University of New Hampshire Classic Problems of Probability presents a lively account of the most intriguing aspects of statistics. The book features a large collection of more than thirty classic probability problems which have been carefully selected for their interesting history, the way they have shaped the field, and their counterintuitive nature. From Cardano's 1564 Games of Chance to Jacob Bernoulli's 1713 Golden Theorem to Parrondo's 1996 Perplexing Paradox, the book clearly outlines the puzzles and problems of probability, interweaving the discussion with rich historical detail and the story of how the mathematicians involved arrived at their solutions. Each problem is given an in-depth treatment, including detailed and rigorous mathematical proofs as needed. Some of the fascinating topics discussed by the author include: Buffon's Needle problem and its ingenious treatment by Joseph Barbier, culminating into a discussion of invariance Various paradoxes raised by Joseph Bertrand Classic problems in decision theory, including Pascal's Wager, Kraitchik's Neckties, and Newcomb's problem The Bayesian paradigm and various philosophies of probability Coverage of both elementary and more complex problems, including the Chevalier de Méré problems, Fisher and the lady testing tea, the birthday problem and its various extensions, and the Borel-Kolmogorov paradox Classic Problems of Probability is an eye-opening, one-of-a-kind reference for researchers and professionals interested in the history of probability and the varied problem-solving strategies employed throughout the ages. The book also serves as an insightful supplement for courses on mathematical probability and introductory probability and statistics at the undergraduate level.
Publisher: John Wiley & Sons
ISBN: 1118063252
Category : Mathematics
Languages : en
Pages : 341
Book Description
Winner of the 2012 PROSE Award for Mathematics from The American Publishers Awards for Professional and Scholarly Excellence. "A great book, one that I will certainly add to my personal library." —Paul J. Nahin, Professor Emeritus of Electrical Engineering, University of New Hampshire Classic Problems of Probability presents a lively account of the most intriguing aspects of statistics. The book features a large collection of more than thirty classic probability problems which have been carefully selected for their interesting history, the way they have shaped the field, and their counterintuitive nature. From Cardano's 1564 Games of Chance to Jacob Bernoulli's 1713 Golden Theorem to Parrondo's 1996 Perplexing Paradox, the book clearly outlines the puzzles and problems of probability, interweaving the discussion with rich historical detail and the story of how the mathematicians involved arrived at their solutions. Each problem is given an in-depth treatment, including detailed and rigorous mathematical proofs as needed. Some of the fascinating topics discussed by the author include: Buffon's Needle problem and its ingenious treatment by Joseph Barbier, culminating into a discussion of invariance Various paradoxes raised by Joseph Bertrand Classic problems in decision theory, including Pascal's Wager, Kraitchik's Neckties, and Newcomb's problem The Bayesian paradigm and various philosophies of probability Coverage of both elementary and more complex problems, including the Chevalier de Méré problems, Fisher and the lady testing tea, the birthday problem and its various extensions, and the Borel-Kolmogorov paradox Classic Problems of Probability is an eye-opening, one-of-a-kind reference for researchers and professionals interested in the history of probability and the varied problem-solving strategies employed throughout the ages. The book also serves as an insightful supplement for courses on mathematical probability and introductory probability and statistics at the undergraduate level.
Problems in Probability
Author: T. M. Mills
Publisher: World Scientific
ISBN: 9789810245986
Category : Mathematics
Languages : en
Pages : 200
Book Description
Probability theory is an important part of contemporary mathematics. It plays a key role in the insurance industry, in the modelling of financial markets, and in statistics generally ? including all those fields of endeavour to which statistics is applied (e.g. health, physical sciences, engineering, economics). The 20th century has been an important period for the subject, because we have witnessed the development of a solid mathematical basis for the study of probability, especially from the Russian school of probability under the leadership of A N Kolmogorov. We have also seen many new applications of probability ? from applications of stochastic calculus in the financial industry to Internet gambling. At the beginning of the 21st century, the subject offers plenty of scope for theoretical developments, modern applications and computational problems. There is something for everyone in probability The notes and problems in this book have been designed to provide a basis for a series of lectures suitable for advanced undergraduate students on the subject of probability. Through problem solving, students can experience the excitement associated with probability. This activity will help them to develop their problem-solving skills, which are so valuable in today's world. The problems in the book will introduce the student to some famous works and workers in probability and convey the historical, classical and contemporary aspects of probability. A key feature of the book is that many problems are in fact small guided research projects. The research work involved in solving the problems will enhance the student's library research skills.
Publisher: World Scientific
ISBN: 9789810245986
Category : Mathematics
Languages : en
Pages : 200
Book Description
Probability theory is an important part of contemporary mathematics. It plays a key role in the insurance industry, in the modelling of financial markets, and in statistics generally ? including all those fields of endeavour to which statistics is applied (e.g. health, physical sciences, engineering, economics). The 20th century has been an important period for the subject, because we have witnessed the development of a solid mathematical basis for the study of probability, especially from the Russian school of probability under the leadership of A N Kolmogorov. We have also seen many new applications of probability ? from applications of stochastic calculus in the financial industry to Internet gambling. At the beginning of the 21st century, the subject offers plenty of scope for theoretical developments, modern applications and computational problems. There is something for everyone in probability The notes and problems in this book have been designed to provide a basis for a series of lectures suitable for advanced undergraduate students on the subject of probability. Through problem solving, students can experience the excitement associated with probability. This activity will help them to develop their problem-solving skills, which are so valuable in today's world. The problems in the book will introduce the student to some famous works and workers in probability and convey the historical, classical and contemporary aspects of probability. A key feature of the book is that many problems are in fact small guided research projects. The research work involved in solving the problems will enhance the student's library research skills.
Problems and Snapshots from the World of Probability
Author: Gunnar Blom
Publisher: Springer Science & Business Media
ISBN: 1461243041
Category : Mathematics
Languages : en
Pages : 252
Book Description
We, the authors of this book, are three ardent devotees of chance, or some what more precisely, of discrete probability. When we were collecting the material, we felt that one special pleasure of the field lay in its evocation of an earlier age: many of our 'probabilistic forefathers' were dexterous solvers of discrete problems. We hope that this pleasure will be transmitted to the readers. The first problem-book of a similar kind as ours is perhaps Mosteller's well-known Fifty Challenging Problems in Probability (1965). Possibly, our book is the second. The book contains 125 problems and snapshots from the world of prob ability. A 'problem' generally leads to a question with a definite answer. A 'snapshot' is either a picture or a bird's-eye view of some probabilistic field. The selection is, of course, highly subjective, and we have not even tried to cover all parts of the subject systematically. Limit theorems appear only seldom, for otherwise the book would have become unduly large. We want to state emphatically that we have not written a textbook in probability, but rather a book for browsing through when occupying an easy-chair. Therefore, ideas and results are often put forth without a machinery of formulas and derivations; the conscientious readers, who want to penetrate the whole clockwork, will soon have to move to their desks and utilize appropriate tools.
Publisher: Springer Science & Business Media
ISBN: 1461243041
Category : Mathematics
Languages : en
Pages : 252
Book Description
We, the authors of this book, are three ardent devotees of chance, or some what more precisely, of discrete probability. When we were collecting the material, we felt that one special pleasure of the field lay in its evocation of an earlier age: many of our 'probabilistic forefathers' were dexterous solvers of discrete problems. We hope that this pleasure will be transmitted to the readers. The first problem-book of a similar kind as ours is perhaps Mosteller's well-known Fifty Challenging Problems in Probability (1965). Possibly, our book is the second. The book contains 125 problems and snapshots from the world of prob ability. A 'problem' generally leads to a question with a definite answer. A 'snapshot' is either a picture or a bird's-eye view of some probabilistic field. The selection is, of course, highly subjective, and we have not even tried to cover all parts of the subject systematically. Limit theorems appear only seldom, for otherwise the book would have become unduly large. We want to state emphatically that we have not written a textbook in probability, but rather a book for browsing through when occupying an easy-chair. Therefore, ideas and results are often put forth without a machinery of formulas and derivations; the conscientious readers, who want to penetrate the whole clockwork, will soon have to move to their desks and utilize appropriate tools.
Fifty Challenging Problems in Probability with Solutions
Author: Frederick Mosteller
Publisher: Courier Corporation
ISBN: 0486134962
Category : Mathematics
Languages : en
Pages : 100
Book Description
Remarkable puzzlers, graded in difficulty, illustrate elementary and advanced aspects of probability. These problems were selected for originality, general interest, or because they demonstrate valuable techniques. Also includes detailed solutions.
Publisher: Courier Corporation
ISBN: 0486134962
Category : Mathematics
Languages : en
Pages : 100
Book Description
Remarkable puzzlers, graded in difficulty, illustrate elementary and advanced aspects of probability. These problems were selected for originality, general interest, or because they demonstrate valuable techniques. Also includes detailed solutions.
Introduction to Counting and Probability
Author: David Patrick
Publisher:
ISBN: 9781934124109
Category : Counting
Languages : en
Pages : 0
Book Description
Publisher:
ISBN: 9781934124109
Category : Counting
Languages : en
Pages : 0
Book Description
Digital Dice
Author: Paul J. Nahin
Publisher: Princeton University Press
ISBN: 1400839297
Category : Mathematics
Languages : en
Pages : 281
Book Description
Some probability problems are so difficult that they stump the smartest mathematicians. But even the hardest of these problems can often be solved with a computer and a Monte Carlo simulation, in which a random-number generator simulates a physical process, such as a million rolls of a pair of dice. This is what Digital Dice is all about: how to get numerical answers to difficult probability problems without having to solve complicated mathematical equations. Popular-math writer Paul Nahin challenges readers to solve twenty-one difficult but fun problems, from determining the odds of coin-flipping games to figuring out the behavior of elevators. Problems build from relatively easy (deciding whether a dishwasher who breaks most of the dishes at a restaurant during a given week is clumsy or just the victim of randomness) to the very difficult (tackling branching processes of the kind that had to be solved by Manhattan Project mathematician Stanislaw Ulam). In his characteristic style, Nahin brings the problems to life with interesting and odd historical anecdotes. Readers learn, for example, not just how to determine the optimal stopping point in any selection process but that astronomer Johannes Kepler selected his second wife by interviewing eleven women. The book shows readers how to write elementary computer codes using any common programming language, and provides solutions and line-by-line walk-throughs of a MATLAB code for each problem. Digital Dice will appeal to anyone who enjoys popular math or computer science.
Publisher: Princeton University Press
ISBN: 1400839297
Category : Mathematics
Languages : en
Pages : 281
Book Description
Some probability problems are so difficult that they stump the smartest mathematicians. But even the hardest of these problems can often be solved with a computer and a Monte Carlo simulation, in which a random-number generator simulates a physical process, such as a million rolls of a pair of dice. This is what Digital Dice is all about: how to get numerical answers to difficult probability problems without having to solve complicated mathematical equations. Popular-math writer Paul Nahin challenges readers to solve twenty-one difficult but fun problems, from determining the odds of coin-flipping games to figuring out the behavior of elevators. Problems build from relatively easy (deciding whether a dishwasher who breaks most of the dishes at a restaurant during a given week is clumsy or just the victim of randomness) to the very difficult (tackling branching processes of the kind that had to be solved by Manhattan Project mathematician Stanislaw Ulam). In his characteristic style, Nahin brings the problems to life with interesting and odd historical anecdotes. Readers learn, for example, not just how to determine the optimal stopping point in any selection process but that astronomer Johannes Kepler selected his second wife by interviewing eleven women. The book shows readers how to write elementary computer codes using any common programming language, and provides solutions and line-by-line walk-throughs of a MATLAB code for each problem. Digital Dice will appeal to anyone who enjoys popular math or computer science.