Author: Malempati M. Rao
Publisher: Springer Science & Business Media
ISBN: 0387277315
Category : Mathematics
Languages : en
Pages : 537
Book Description
This is a revised and expanded edition of a successful graduate and reference text. The book is designed for a standard graduate course on probability theory, including some important applications. The new edition offers a detailed treatment of the core area of probability, and both structural and limit results are presented in detail. Compared to the first edition, the material and presentation are better highlighted; each chapter is improved and updated.
Probability and Mathematical Statistics
Author: Mary C. Meyer
Publisher: SIAM
ISBN: 1611975786
Category : Mathematics
Languages : en
Pages : 720
Book Description
This book develops the theory of probability and mathematical statistics with the goal of analyzing real-world data. Throughout the text, the R package is used to compute probabilities, check analytically computed answers, simulate probability distributions, illustrate answers with appropriate graphics, and help students develop intuition surrounding probability and statistics. Examples, demonstrations, and exercises in the R programming language serve to reinforce ideas and facilitate understanding and confidence. The books Chapter Highlights provide a summary of key concepts, while the examples utilizing R within the chapters are instructive and practical. Exercises that focus on real-world applications without sacrificing mathematical rigor are included, along with more than 200 figures that help clarify both concepts and applications. In addition, the book features two helpful appendices: annotated solutions to 700 exercises and a Review of Useful Math. Written for use in applied masters classes, Probability and Mathematical Statistics: Theory, Applications, and Practice in R is also suitable for advanced undergraduates and for self-study by applied mathematicians and statisticians and qualitatively inclined engineers and scientists.
Publisher: SIAM
ISBN: 1611975786
Category : Mathematics
Languages : en
Pages : 720
Book Description
This book develops the theory of probability and mathematical statistics with the goal of analyzing real-world data. Throughout the text, the R package is used to compute probabilities, check analytically computed answers, simulate probability distributions, illustrate answers with appropriate graphics, and help students develop intuition surrounding probability and statistics. Examples, demonstrations, and exercises in the R programming language serve to reinforce ideas and facilitate understanding and confidence. The books Chapter Highlights provide a summary of key concepts, while the examples utilizing R within the chapters are instructive and practical. Exercises that focus on real-world applications without sacrificing mathematical rigor are included, along with more than 200 figures that help clarify both concepts and applications. In addition, the book features two helpful appendices: annotated solutions to 700 exercises and a Review of Useful Math. Written for use in applied masters classes, Probability and Mathematical Statistics: Theory, Applications, and Practice in R is also suitable for advanced undergraduates and for self-study by applied mathematicians and statisticians and qualitatively inclined engineers and scientists.
Probability Theory with Applications
Author: Malempati M. Rao
Publisher: Springer Science & Business Media
ISBN: 0387277315
Category : Mathematics
Languages : en
Pages : 537
Book Description
This is a revised and expanded edition of a successful graduate and reference text. The book is designed for a standard graduate course on probability theory, including some important applications. The new edition offers a detailed treatment of the core area of probability, and both structural and limit results are presented in detail. Compared to the first edition, the material and presentation are better highlighted; each chapter is improved and updated.
Publisher: Springer Science & Business Media
ISBN: 0387277315
Category : Mathematics
Languages : en
Pages : 537
Book Description
This is a revised and expanded edition of a successful graduate and reference text. The book is designed for a standard graduate course on probability theory, including some important applications. The new edition offers a detailed treatment of the core area of probability, and both structural and limit results are presented in detail. Compared to the first edition, the material and presentation are better highlighted; each chapter is improved and updated.
Mathematical Statistics with Applications
Author: Dennis Wackerly
Publisher: Cengage Learning
ISBN: 9780495110811
Category : Mathematics
Languages : en
Pages : 944
Book Description
In their bestselling MATHEMATICAL STATISTICS WITH APPLICATIONS, premiere authors Dennis Wackerly, William Mendenhall, and Richard L. Scheaffer present a solid foundation in statistical theory while conveying the relevance and importance of the theory in solving practical problems in the real world. The authors' use of practical applications and excellent exercises helps students discover the nature of statistics and understand its essential role in scientific research. Important Notice: Media content referenced within the product description or the product text may not be available in the ebook version.
Publisher: Cengage Learning
ISBN: 9780495110811
Category : Mathematics
Languages : en
Pages : 944
Book Description
In their bestselling MATHEMATICAL STATISTICS WITH APPLICATIONS, premiere authors Dennis Wackerly, William Mendenhall, and Richard L. Scheaffer present a solid foundation in statistical theory while conveying the relevance and importance of the theory in solving practical problems in the real world. The authors' use of practical applications and excellent exercises helps students discover the nature of statistics and understand its essential role in scientific research. Important Notice: Media content referenced within the product description or the product text may not be available in the ebook version.
Probability Theory I
Author: M. Loeve
Publisher: Springer Science & Business Media
ISBN: 9780387902104
Category : Mathematics
Languages : en
Pages : 452
Book Description
This fourth edition contains several additions. The main ones con cern three closely related topics: Brownian motion, functional limit distributions, and random walks. Besides the power and ingenuity of their methods and the depth and beauty of their results, their importance is fast growing in Analysis as well as in theoretical and applied Proba bility. These additions increased the book to an unwieldy size and it had to be split into two volumes. About half of the first volume is devoted to an elementary introduc tion, then to mathematical foundations and basic probability concepts and tools. The second half is devoted to a detailed study of Independ ence which played and continues to playa central role both by itself and as a catalyst. The main additions consist of a section on convergence of probabilities on metric spaces and a chapter whose first section on domains of attrac tion completes the study of the Central limit problem, while the second one is devoted to random walks. About a third of the second volume is devoted to conditioning and properties of sequences of various types of dependence. The other two thirds are devoted to random functions; the last Part on Elements of random analysis is more sophisticated. The main addition consists of a chapter on Brownian motion and limit distributions.
Publisher: Springer Science & Business Media
ISBN: 9780387902104
Category : Mathematics
Languages : en
Pages : 452
Book Description
This fourth edition contains several additions. The main ones con cern three closely related topics: Brownian motion, functional limit distributions, and random walks. Besides the power and ingenuity of their methods and the depth and beauty of their results, their importance is fast growing in Analysis as well as in theoretical and applied Proba bility. These additions increased the book to an unwieldy size and it had to be split into two volumes. About half of the first volume is devoted to an elementary introduc tion, then to mathematical foundations and basic probability concepts and tools. The second half is devoted to a detailed study of Independ ence which played and continues to playa central role both by itself and as a catalyst. The main additions consist of a section on convergence of probabilities on metric spaces and a chapter whose first section on domains of attrac tion completes the study of the Central limit problem, while the second one is devoted to random walks. About a third of the second volume is devoted to conditioning and properties of sequences of various types of dependence. The other two thirds are devoted to random functions; the last Part on Elements of random analysis is more sophisticated. The main addition consists of a chapter on Brownian motion and limit distributions.
Modern Mathematical Statistics with Applications
Author: Jay L. Devore
Publisher: Springer Nature
ISBN: 3030551563
Category : Mathematics
Languages : en
Pages : 981
Book Description
This 3rd edition of Modern Mathematical Statistics with Applications tries to strike a balance between mathematical foundations and statistical practice. The book provides a clear and current exposition of statistical concepts and methodology, including many examples and exercises based on real data gleaned from publicly available sources. Here is a small but representative selection of scenarios for our examples and exercises based on information in recent articles: Use of the “Big Mac index” by the publication The Economist as a humorous way to compare product costs across nations Visualizing how the concentration of lead levels in cartridges varies for each of five brands of e-cigarettes Describing the distribution of grip size among surgeons and how it impacts their ability to use a particular brand of surgical stapler Estimating the true average odometer reading of used Porsche Boxsters listed for sale on www.cars.com Comparing head acceleration after impact when wearing a football helmet with acceleration without a helmet Investigating the relationship between body mass index and foot load while running The main focus of the book is on presenting and illustrating methods of inferential statistics used by investigators in a wide variety of disciplines, from actuarial science all the way to zoology. It begins with a chapter on descriptive statistics that immediately exposes the reader to the analysis of real data. The next six chapters develop the probability material that facilitates the transition from simply describing data to drawing formal conclusions based on inferential methodology. Point estimation, the use of statistical intervals, and hypothesis testing are the topics of the first three inferential chapters. The remainder of the book explores the use of these methods in a variety of more complex settings. This edition includes many new examples and exercises as well as an introduction to the simulation of events and probability distributions. There are more than 1300 exercises in the book, ranging from very straightforward to reasonably challenging. Many sections have been rewritten with the goal of streamlining and providing a more accessible exposition. Output from the most common statistical software packages is included wherever appropriate (a feature absent from virtually all other mathematical statistics textbooks). The authors hope that their enthusiasm for the theory and applicability of statistics to real world problems will encourage students to pursue more training in the discipline.
Publisher: Springer Nature
ISBN: 3030551563
Category : Mathematics
Languages : en
Pages : 981
Book Description
This 3rd edition of Modern Mathematical Statistics with Applications tries to strike a balance between mathematical foundations and statistical practice. The book provides a clear and current exposition of statistical concepts and methodology, including many examples and exercises based on real data gleaned from publicly available sources. Here is a small but representative selection of scenarios for our examples and exercises based on information in recent articles: Use of the “Big Mac index” by the publication The Economist as a humorous way to compare product costs across nations Visualizing how the concentration of lead levels in cartridges varies for each of five brands of e-cigarettes Describing the distribution of grip size among surgeons and how it impacts their ability to use a particular brand of surgical stapler Estimating the true average odometer reading of used Porsche Boxsters listed for sale on www.cars.com Comparing head acceleration after impact when wearing a football helmet with acceleration without a helmet Investigating the relationship between body mass index and foot load while running The main focus of the book is on presenting and illustrating methods of inferential statistics used by investigators in a wide variety of disciplines, from actuarial science all the way to zoology. It begins with a chapter on descriptive statistics that immediately exposes the reader to the analysis of real data. The next six chapters develop the probability material that facilitates the transition from simply describing data to drawing formal conclusions based on inferential methodology. Point estimation, the use of statistical intervals, and hypothesis testing are the topics of the first three inferential chapters. The remainder of the book explores the use of these methods in a variety of more complex settings. This edition includes many new examples and exercises as well as an introduction to the simulation of events and probability distributions. There are more than 1300 exercises in the book, ranging from very straightforward to reasonably challenging. Many sections have been rewritten with the goal of streamlining and providing a more accessible exposition. Output from the most common statistical software packages is included wherever appropriate (a feature absent from virtually all other mathematical statistics textbooks). The authors hope that their enthusiasm for the theory and applicability of statistics to real world problems will encourage students to pursue more training in the discipline.
Martingale Limit Theory and Its Application
Author: P. Hall
Publisher: Academic Press
ISBN: 1483263223
Category : Mathematics
Languages : en
Pages : 321
Book Description
Martingale Limit Theory and Its Application discusses the asymptotic properties of martingales, particularly as regards key prototype of probabilistic behavior that has wide applications. The book explains the thesis that martingale theory is central to probability theory, and also examines the relationships between martingales and processes embeddable in or approximated by Brownian motion. The text reviews the martingale convergence theorem, the classical limit theory and analogs, and the martingale limit theorems viewed as the rate of convergence results in the martingale convergence theorem. The book explains the square function inequalities, weak law of large numbers, as well as the strong law of large numbers. The text discusses the reverse martingales, martingale tail sums, the invariance principles in the central limit theorem, and also the law of the iterated logarithm. The book investigates the limit theory for stationary processes via corresponding results for approximating martingales and the estimation of parameters from stochastic processes. The text can be profitably used as a reference for mathematicians, advanced students, and professors of higher mathematics or statistics.
Publisher: Academic Press
ISBN: 1483263223
Category : Mathematics
Languages : en
Pages : 321
Book Description
Martingale Limit Theory and Its Application discusses the asymptotic properties of martingales, particularly as regards key prototype of probabilistic behavior that has wide applications. The book explains the thesis that martingale theory is central to probability theory, and also examines the relationships between martingales and processes embeddable in or approximated by Brownian motion. The text reviews the martingale convergence theorem, the classical limit theory and analogs, and the martingale limit theorems viewed as the rate of convergence results in the martingale convergence theorem. The book explains the square function inequalities, weak law of large numbers, as well as the strong law of large numbers. The text discusses the reverse martingales, martingale tail sums, the invariance principles in the central limit theorem, and also the law of the iterated logarithm. The book investigates the limit theory for stationary processes via corresponding results for approximating martingales and the estimation of parameters from stochastic processes. The text can be profitably used as a reference for mathematicians, advanced students, and professors of higher mathematics or statistics.
Mathematical Statistics With Applications
Author: Asha Seth Kapadia
Publisher: CRC Press
ISBN: 9780824754006
Category : Mathematics
Languages : en
Pages : 658
Book Description
Mathematical statistics typically represents one of the most difficult challenges in statistics, particularly for those with more applied, rather than mathematical, interests and backgrounds. Most textbooks on the subject provide little or no review of the advanced calculus topics upon which much of mathematical statistics relies and furthermore contain material that is wholly theoretical, thus presenting even greater challenges to those interested in applying advanced statistics to a specific area. Mathematical Statistics with Applications presents the background concepts and builds the technical sophistication needed to move on to more advanced studies in multivariate analysis, decision theory, stochastic processes, or computational statistics. Applications embedded within theoretical discussions clearly demonstrate the utility of the theory in a useful and relevant field of application and allow readers to avoid sudden exposure to purely theoretical materials. With its clear explanations and more than usual emphasis on applications and computation, this text reaches out to the many students and professionals more interested in the practical use of statistics to enrich their work in areas such as communications, computer science, economics, astronomy, and public health.
Publisher: CRC Press
ISBN: 9780824754006
Category : Mathematics
Languages : en
Pages : 658
Book Description
Mathematical statistics typically represents one of the most difficult challenges in statistics, particularly for those with more applied, rather than mathematical, interests and backgrounds. Most textbooks on the subject provide little or no review of the advanced calculus topics upon which much of mathematical statistics relies and furthermore contain material that is wholly theoretical, thus presenting even greater challenges to those interested in applying advanced statistics to a specific area. Mathematical Statistics with Applications presents the background concepts and builds the technical sophistication needed to move on to more advanced studies in multivariate analysis, decision theory, stochastic processes, or computational statistics. Applications embedded within theoretical discussions clearly demonstrate the utility of the theory in a useful and relevant field of application and allow readers to avoid sudden exposure to purely theoretical materials. With its clear explanations and more than usual emphasis on applications and computation, this text reaches out to the many students and professionals more interested in the practical use of statistics to enrich their work in areas such as communications, computer science, economics, astronomy, and public health.
High-Dimensional Probability
Author: Roman Vershynin
Publisher: Cambridge University Press
ISBN: 1108415199
Category : Business & Economics
Languages : en
Pages : 299
Book Description
An integrated package of powerful probabilistic tools and key applications in modern mathematical data science.
Publisher: Cambridge University Press
ISBN: 1108415199
Category : Business & Economics
Languages : en
Pages : 299
Book Description
An integrated package of powerful probabilistic tools and key applications in modern mathematical data science.
Geometric Aspects of Probability Theory and Mathematical Statistics
Author: V.V. Buldygin
Publisher: Springer Science & Business Media
ISBN: 9401716870
Category : Mathematics
Languages : en
Pages : 314
Book Description
It is well known that contemporary mathematics includes many disci plines. Among them the most important are: set theory, algebra, topology, geometry, functional analysis, probability theory, the theory of differential equations and some others. Furthermore, every mathematical discipline consists of several large sections in which specific problems are investigated and the corresponding technique is developed. For example, in general topology we have the following extensive chap ters: the theory of compact extensions of topological spaces, the theory of continuous mappings, cardinal-valued characteristics of topological spaces, the theory of set-valued (multi-valued) mappings, etc. Modern algebra is featured by the following domains: linear algebra, group theory, the theory of rings, universal algebras, lattice theory, category theory, and so on. Concerning modern probability theory, we can easily see that the clas sification of its domains is much more extensive: measure theory on ab stract spaces, Borel and cylindrical measures in infinite-dimensional vector spaces, classical limit theorems, ergodic theory, general stochastic processes, Markov processes, stochastical equations, mathematical statistics, informa tion theory and many others.
Publisher: Springer Science & Business Media
ISBN: 9401716870
Category : Mathematics
Languages : en
Pages : 314
Book Description
It is well known that contemporary mathematics includes many disci plines. Among them the most important are: set theory, algebra, topology, geometry, functional analysis, probability theory, the theory of differential equations and some others. Furthermore, every mathematical discipline consists of several large sections in which specific problems are investigated and the corresponding technique is developed. For example, in general topology we have the following extensive chap ters: the theory of compact extensions of topological spaces, the theory of continuous mappings, cardinal-valued characteristics of topological spaces, the theory of set-valued (multi-valued) mappings, etc. Modern algebra is featured by the following domains: linear algebra, group theory, the theory of rings, universal algebras, lattice theory, category theory, and so on. Concerning modern probability theory, we can easily see that the clas sification of its domains is much more extensive: measure theory on ab stract spaces, Borel and cylindrical measures in infinite-dimensional vector spaces, classical limit theorems, ergodic theory, general stochastic processes, Markov processes, stochastical equations, mathematical statistics, informa tion theory and many others.
Problems in Probability Theory, Mathematical Statistics and Theory of Random Functions
Author: A. A. Sveshnikov
Publisher: Courier Corporation
ISBN: 0486137562
Category : Mathematics
Languages : en
Pages : 516
Book Description
Approximately 1,000 problems — with answers and solutions included at the back of the book — illustrate such topics as random events, random variables, limit theorems, Markov processes, and much more.
Publisher: Courier Corporation
ISBN: 0486137562
Category : Mathematics
Languages : en
Pages : 516
Book Description
Approximately 1,000 problems — with answers and solutions included at the back of the book — illustrate such topics as random events, random variables, limit theorems, Markov processes, and much more.