Probability Theory and Combinatorial Optimization

Probability Theory and Combinatorial Optimization PDF Author: J. Michael Steele
Publisher: SIAM
ISBN: 0898713803
Category : Mathematics
Languages : en
Pages : 164

Get Book Here

Book Description
An introduction to the state of the art of the probability theory most applicable to combinatorial optimization. The questions that receive the most attention are those that deal with discrete optimization problems for points in Euclidean space, such as the minimum spanning tree, the traveling-salesman tour, and minimal-length matchings.

Probability Theory and Combinatorial Optimization

Probability Theory and Combinatorial Optimization PDF Author: J. Michael Steele
Publisher: SIAM
ISBN: 0898713803
Category : Mathematics
Languages : en
Pages : 164

Get Book Here

Book Description
An introduction to the state of the art of the probability theory most applicable to combinatorial optimization. The questions that receive the most attention are those that deal with discrete optimization problems for points in Euclidean space, such as the minimum spanning tree, the traveling-salesman tour, and minimal-length matchings.

A First Course in Combinatorial Optimization

A First Course in Combinatorial Optimization PDF Author: Jon Lee
Publisher: Cambridge University Press
ISBN: 9780521010122
Category : Business & Economics
Languages : en
Pages : 232

Get Book Here

Book Description
A First Course in Combinatorial Optimization is a text for a one-semester introductory graduate-level course for students of operations research, mathematics, and computer science. It is a self-contained treatment of the subject, requiring only some mathematical maturity. Topics include: linear and integer programming, polytopes, matroids and matroid optimization, shortest paths, and network flows. Central to the exposition is the polyhedral viewpoint, which is the key principle underlying the successful integer-programming approach to combinatorial-optimization problems. Another key unifying topic is matroids. The author does not dwell on data structures and implementation details, preferring to focus on the key mathematical ideas that lead to useful models and algorithms. Problems and exercises are included throughout as well as references for further study.

Probability Theory of Classical Euclidean Optimization Problems

Probability Theory of Classical Euclidean Optimization Problems PDF Author: Joseph E. Yukich
Publisher: Springer
ISBN: 354069627X
Category : Mathematics
Languages : en
Pages : 162

Get Book Here

Book Description
This monograph describes the stochastic behavior of the solutions to the classic problems of Euclidean combinatorial optimization, computational geometry, and operations research. Using two-sided additivity and isoperimetry, it formulates general methods describing the total edge length of random graphs in Euclidean space. The approach furnishes strong laws of large numbers, large deviations, and rates of convergence for solutions to the random versions of various classic optimization problems, including the traveling salesman, minimal spanning tree, minimal matching, minimal triangulation, two-factor, and k-median problems. Essentially self-contained, this monograph may be read by probabilists, combinatorialists, graph theorists, and theoretical computer scientists.

Geometric Algorithms and Combinatorial Optimization

Geometric Algorithms and Combinatorial Optimization PDF Author: Martin Grötschel
Publisher: Springer Science & Business Media
ISBN: 3642978819
Category : Mathematics
Languages : en
Pages : 374

Get Book Here

Book Description
Historically, there is a close connection between geometry and optImization. This is illustrated by methods like the gradient method and the simplex method, which are associated with clear geometric pictures. In combinatorial optimization, however, many of the strongest and most frequently used algorithms are based on the discrete structure of the problems: the greedy algorithm, shortest path and alternating path methods, branch-and-bound, etc. In the last several years geometric methods, in particular polyhedral combinatorics, have played a more and more profound role in combinatorial optimization as well. Our book discusses two recent geometric algorithms that have turned out to have particularly interesting consequences in combinatorial optimization, at least from a theoretical point of view. These algorithms are able to utilize the rich body of results in polyhedral combinatorics. The first of these algorithms is the ellipsoid method, developed for nonlinear programming by N. Z. Shor, D. B. Yudin, and A. S. NemirovskiI. It was a great surprise when L. G. Khachiyan showed that this method can be adapted to solve linear programs in polynomial time, thus solving an important open theoretical problem. While the ellipsoid method has not proved to be competitive with the simplex method in practice, it does have some features which make it particularly suited for the purposes of combinatorial optimization. The second algorithm we discuss finds its roots in the classical "geometry of numbers", developed by Minkowski. This method has had traditionally deep applications in number theory, in particular in diophantine approximation.

Combinatorial Optimization

Combinatorial Optimization PDF Author: Gerard Cornuejols
Publisher: SIAM
ISBN: 0898714818
Category : Mathematics
Languages : en
Pages : 140

Get Book Here

Book Description
New and elegant proofs of classical results and makes difficult results accessible.

Probability on Discrete Structures

Probability on Discrete Structures PDF Author: Harry Kesten
Publisher: Springer
ISBN: 9783662094457
Category : Mathematics
Languages : en
Pages : 351

Get Book Here

Book Description
Most probability problems involve random variables indexed by space and/or time. These problems almost always have a version in which space and/or time are taken to be discrete. This volume deals with areas in which the discrete version is more natural than the continuous one, perhaps even the only one than can be formulated without complicated constructions and machinery. The 5 papers of this volume discuss problems in which there has been significant progress in the last few years; they are motivated by, or have been developed in parallel with, statistical physics. They include questions about asymptotic shape for stochastic growth models and for random clusters; existence, location and properties of phase transitions; speed of convergence to equilibrium in Markov chains, and in particular for Markov chains based on models with a phase transition; cut-off phenomena for random walks. The articles can be read independently of each other. Their unifying theme is that of models built on discrete spaces or graphs. Such models are often easy to formulate. Correspondingly, the book requires comparatively little previous knowledge of the machinery of probability.

Integer and Combinatorial Optimization

Integer and Combinatorial Optimization PDF Author: Laurence A. Wolsey
Publisher: John Wiley & Sons
ISBN: 1118626869
Category : Mathematics
Languages : en
Pages : 782

Get Book Here

Book Description
Rave reviews for INTEGER AND COMBINATORIAL OPTIMIZATION "This book provides an excellent introduction and survey of traditional fields of combinatorial optimization . . . It is indeed one of the best and most complete texts on combinatorial optimization . . . available. [And] with more than 700 entries, [it] has quite an exhaustive reference list."-Optima "A unifying approach to optimization problems is to formulate them like linear programming problems, while restricting some or all of the variables to the integers. This book is an encyclopedic resource for such formulations, as well as for understanding the structure of and solving the resulting integer programming problems."-Computing Reviews "[This book] can serve as a basis for various graduate courses on discrete optimization as well as a reference book for researchers and practitioners."-Mathematical Reviews "This comprehensive and wide-ranging book will undoubtedly become a standard reference book for all those in the field of combinatorial optimization."-Bulletin of the London Mathematical Society "This text should be required reading for anybody who intends to do research in this area or even just to keep abreast of developments."-Times Higher Education Supplement, London Also of interest . . . INTEGER PROGRAMMING Laurence A. Wolsey Comprehensive and self-contained, this intermediate-level guide to integer programming provides readers with clear, up-to-date explanations on why some problems are difficult to solve, how techniques can be reformulated to give better results, and how mixed integer programming systems can be used more effectively. 1998 (0-471-28366-5) 260 pp.

Iterative Methods in Combinatorial Optimization

Iterative Methods in Combinatorial Optimization PDF Author: Lap Chi Lau
Publisher: Cambridge University Press
ISBN: 1139499394
Category : Computers
Languages : en
Pages : 255

Get Book Here

Book Description
With the advent of approximation algorithms for NP-hard combinatorial optimization problems, several techniques from exact optimization such as the primal-dual method have proven their staying power and versatility. This book describes a simple and powerful method that is iterative in essence and similarly useful in a variety of settings for exact and approximate optimization. The authors highlight the commonality and uses of this method to prove a variety of classical polyhedral results on matchings, trees, matroids and flows. The presentation style is elementary enough to be accessible to anyone with exposure to basic linear algebra and graph theory, making the book suitable for introductory courses in combinatorial optimization at the upper undergraduate and beginning graduate levels. Discussions of advanced applications illustrate their potential for future application in research in approximation algorithms.

Combinatorial Optimization

Combinatorial Optimization PDF Author: Bernhard Korte
Publisher: Springer Science & Business Media
ISBN: 3540292977
Category : Mathematics
Languages : en
Pages : 596

Get Book Here

Book Description
This well-written textbook on combinatorial optimization puts special emphasis on theoretical results and algorithms with provably good performance, in contrast to heuristics. The book contains complete (but concise) proofs, as well as many deep results, some of which have not appeared in any previous books.

The Cross-Entropy Method

The Cross-Entropy Method PDF Author: Reuven Y. Rubinstein
Publisher: Springer Science & Business Media
ISBN: 1475743211
Category : Computers
Languages : en
Pages : 316

Get Book Here

Book Description
Rubinstein is the pioneer of the well-known score function and cross-entropy methods. Accessible to a broad audience of engineers, computer scientists, mathematicians, statisticians and in general anyone, theorist and practitioner, who is interested in smart simulation, fast optimization, learning algorithms, and image processing.