Author: Herbert Heyer
Publisher: Springer
ISBN: 3540462066
Category : Mathematics
Languages : en
Pages : 446
Book Description
The latest in this series of Oberwolfach conferences focussed on the interplay between structural probability theory and various other areas of pure and applied mathematics such as Tauberian theory, infinite-dimensional rotation groups, central limit theorems, harmonizable processes, and spherical data. Thus it was attended by mathematicians whose research interests range from number theory to quantum physics in conjunction with structural properties of probabilistic phenomena. This volume contains 5 survey articles submitted on special invitation and 25 original research papers.
Probability Measures on Groups IX
Author: Herbert Heyer
Publisher: Springer
ISBN: 3540462066
Category : Mathematics
Languages : en
Pages : 446
Book Description
The latest in this series of Oberwolfach conferences focussed on the interplay between structural probability theory and various other areas of pure and applied mathematics such as Tauberian theory, infinite-dimensional rotation groups, central limit theorems, harmonizable processes, and spherical data. Thus it was attended by mathematicians whose research interests range from number theory to quantum physics in conjunction with structural properties of probabilistic phenomena. This volume contains 5 survey articles submitted on special invitation and 25 original research papers.
Publisher: Springer
ISBN: 3540462066
Category : Mathematics
Languages : en
Pages : 446
Book Description
The latest in this series of Oberwolfach conferences focussed on the interplay between structural probability theory and various other areas of pure and applied mathematics such as Tauberian theory, infinite-dimensional rotation groups, central limit theorems, harmonizable processes, and spherical data. Thus it was attended by mathematicians whose research interests range from number theory to quantum physics in conjunction with structural properties of probabilistic phenomena. This volume contains 5 survey articles submitted on special invitation and 25 original research papers.
Probability Measures on Locally Compact Groups
Author: H. Heyer
Publisher: Springer Science & Business Media
ISBN: 3642667066
Category : Mathematics
Languages : en
Pages : 542
Book Description
Probability measures on algebraic-topological structures such as topological semi groups, groups, and vector spaces have become of increasing importance in recent years for probabilists interested in the structural aspects of the theory as well as for analysts aiming at applications within the scope of probability theory. In order to obtain a natural framework for a first systematic presentation of the most developed part of the work done in the field we restrict ourselves to prob ability measures on locally compact groups. At the same time we stress the non Abelian aspect. Thus the book is concerned with a set of problems which can be regarded either from the probabilistic or from the harmonic-analytic point of view. In fact, it seems to be the synthesis of these two viewpoints, the initial inspiration coming from probability and the refined techniques from harmonic analysis which made this newly established subject so fascinating. The goal of the presentation is to give a fairly complete treatment of the central limit problem for probability measures on a locally compact group. In analogy to the classical theory the discussion is centered around the infinitely divisible probability measures on the group and their relationship to the convergence of infinitesimal triangular systems.
Publisher: Springer Science & Business Media
ISBN: 3642667066
Category : Mathematics
Languages : en
Pages : 542
Book Description
Probability measures on algebraic-topological structures such as topological semi groups, groups, and vector spaces have become of increasing importance in recent years for probabilists interested in the structural aspects of the theory as well as for analysts aiming at applications within the scope of probability theory. In order to obtain a natural framework for a first systematic presentation of the most developed part of the work done in the field we restrict ourselves to prob ability measures on locally compact groups. At the same time we stress the non Abelian aspect. Thus the book is concerned with a set of problems which can be regarded either from the probabilistic or from the harmonic-analytic point of view. In fact, it seems to be the synthesis of these two viewpoints, the initial inspiration coming from probability and the refined techniques from harmonic analysis which made this newly established subject so fascinating. The goal of the presentation is to give a fairly complete treatment of the central limit problem for probability measures on a locally compact group. In analogy to the classical theory the discussion is centered around the infinitely divisible probability measures on the group and their relationship to the convergence of infinitesimal triangular systems.
Analysis On Infinite-dimensional Lie Groups And Algebras - Proceedings Of The International Colloquium
Author: Jean Marion
Publisher: World Scientific
ISBN: 9814544841
Category :
Languages : en
Pages : 410
Book Description
This proceedings volume can be considered as a monograph on the state-of-the-art in the wide range of analysis on infinite-dimensional algebraic-topological structures. Topics covered in this volume include integrability and regularity for Lie groups and Lie algebras, actions of infinite-dimensional Lie groups on manifolds of paths and related minimal orbits, quasi-invariant measures, white noise analysis, harmonic analysis on generalized convolution structures, and noncommutative geometry. A special feature of this volume is the interrelationship between problems of pure and applied mathematics and also between mathematics and physics.
Publisher: World Scientific
ISBN: 9814544841
Category :
Languages : en
Pages : 410
Book Description
This proceedings volume can be considered as a monograph on the state-of-the-art in the wide range of analysis on infinite-dimensional algebraic-topological structures. Topics covered in this volume include integrability and regularity for Lie groups and Lie algebras, actions of infinite-dimensional Lie groups on manifolds of paths and related minimal orbits, quasi-invariant measures, white noise analysis, harmonic analysis on generalized convolution structures, and noncommutative geometry. A special feature of this volume is the interrelationship between problems of pure and applied mathematics and also between mathematics and physics.
Harmonic Analysis On Hypergroups: Approximation And Stochastic Sequences
Author: Rupert Lasser
Publisher: World Scientific
ISBN: 9811266212
Category : Mathematics
Languages : en
Pages : 621
Book Description
The book aims at giving a monographic presentation of the abstract harmonic analysis of hypergroups, while combining it with applied topics of spectral analysis, approximation by orthogonal expansions and stochastic sequences. Hypergroups are locally compact Hausdorff spaces equipped with a convolution, an involution and a unit element. Related algebraic structures had already been studied by Frobenius around 1900. Their axiomatic characterisation in harmonic analysis was later developed in the 1970s. Hypergoups naturally emerge in seemingly different application areas as time series analysis, probability theory and theoretical physics.The book presents harmonic analysis on commutative and polynomial hypergroups as well as weakly stationary random fields and sequences thereon. For polynomial hypergroups also difference equations and stationary sequences are considered. At greater extent than in the existing literature, the book compiles a rather comprehensive list of hypergroups, in particular of polynomial hypergroups. With an eye on readers at advanced undergraduate and graduate level, the proofs are generally worked out in careful detail. The bibliography is extensive.
Publisher: World Scientific
ISBN: 9811266212
Category : Mathematics
Languages : en
Pages : 621
Book Description
The book aims at giving a monographic presentation of the abstract harmonic analysis of hypergroups, while combining it with applied topics of spectral analysis, approximation by orthogonal expansions and stochastic sequences. Hypergroups are locally compact Hausdorff spaces equipped with a convolution, an involution and a unit element. Related algebraic structures had already been studied by Frobenius around 1900. Their axiomatic characterisation in harmonic analysis was later developed in the 1970s. Hypergoups naturally emerge in seemingly different application areas as time series analysis, probability theory and theoretical physics.The book presents harmonic analysis on commutative and polynomial hypergroups as well as weakly stationary random fields and sequences thereon. For polynomial hypergroups also difference equations and stationary sequences are considered. At greater extent than in the existing literature, the book compiles a rather comprehensive list of hypergroups, in particular of polynomial hypergroups. With an eye on readers at advanced undergraduate and graduate level, the proofs are generally worked out in careful detail. The bibliography is extensive.
Probabilities on the Heisenberg Group
Author: Daniel Neuenschwander
Publisher: Springer
ISBN: 3540685901
Category : Mathematics
Languages : en
Pages : 146
Book Description
The Heisenberg group comes from quantum mechanics and is the simplest non-commutative Lie group. While it belongs to the class of simply connected nilpotent Lie groups, it turns out that its special structure yields many results which (up to now) have not carried over to this larger class. This book is a survey of probabilistic results on the Heisenberg group. The emphasis lies on limit theorems and their relation to Brownian motion. Besides classical probability tools, non-commutative Fourier analysis and functional analysis (operator semigroups) comes in. The book is intended for probabilists and analysts interested in Lie groups, but given the many applications of the Heisenberg group, it will also be useful for theoretical phycisists specialized in quantum mechanics and for engineers.
Publisher: Springer
ISBN: 3540685901
Category : Mathematics
Languages : en
Pages : 146
Book Description
The Heisenberg group comes from quantum mechanics and is the simplest non-commutative Lie group. While it belongs to the class of simply connected nilpotent Lie groups, it turns out that its special structure yields many results which (up to now) have not carried over to this larger class. This book is a survey of probabilistic results on the Heisenberg group. The emphasis lies on limit theorems and their relation to Brownian motion. Besides classical probability tools, non-commutative Fourier analysis and functional analysis (operator semigroups) comes in. The book is intended for probabilists and analysts interested in Lie groups, but given the many applications of the Heisenberg group, it will also be useful for theoretical phycisists specialized in quantum mechanics and for engineers.
Applications of Hypergroups and Related Measure Algebras
Author:
Publisher: American Mathematical Soc.
ISBN: 0821802976
Category : Mathematics
Languages : en
Pages : 458
Book Description
`The most important single thing about this conference was that it brought together for the first time representatives of all major groups of users of hypergroups. [They] talked to each other about how they were using hypergroups in fields as diverse as special functions, probability theory, representation theory, measure algebras, Hopf algebras, and Hecke algebras. This led to fireworks.' - from the Introduction. Hypergroups occur in a wide variety of contexts, and mathematicians the world over have been discovering this same mathematical structure hidden in very different applications. The diverse viewpoints on the subject have led to the need for a common perspective, if not a common theory. Presenting the proceedings of a Joint Summer Research Conference held in Seattle in the summer of 1993, this book will serve as a valuable starting point and reference tool for the wide range of users of hypergroups and make it easier for an even larger audience to use these structures in their work.
Publisher: American Mathematical Soc.
ISBN: 0821802976
Category : Mathematics
Languages : en
Pages : 458
Book Description
`The most important single thing about this conference was that it brought together for the first time representatives of all major groups of users of hypergroups. [They] talked to each other about how they were using hypergroups in fields as diverse as special functions, probability theory, representation theory, measure algebras, Hopf algebras, and Hecke algebras. This led to fireworks.' - from the Introduction. Hypergroups occur in a wide variety of contexts, and mathematicians the world over have been discovering this same mathematical structure hidden in very different applications. The diverse viewpoints on the subject have led to the need for a common perspective, if not a common theory. Presenting the proceedings of a Joint Summer Research Conference held in Seattle in the summer of 1993, this book will serve as a valuable starting point and reference tool for the wide range of users of hypergroups and make it easier for an even larger audience to use these structures in their work.
Positivity in Lie Theory
Author: Joachim Hilgert
Publisher: Walter de Gruyter
ISBN: 3110811189
Category : Mathematics
Languages : en
Pages : 305
Book Description
The aim of the series is to present new and important developments in pure and applied mathematics. Well established in the community over two decades, it offers a large library of mathematics including several important classics. The volumes supply thorough and detailed expositions of the methods and ideas essential to the topics in question. In addition, they convey their relationships to other parts of mathematics. The series is addressed to advanced readers wishing to thoroughly study the topic. Editorial Board Lev Birbrair, Universidade Federal do Ceará, Fortaleza, Brasil Walter D. Neumann, Columbia University, New York, USA Markus J. Pflaum, University of Colorado, Boulder, USA Dierk Schleicher, Jacobs University, Bremen, Germany Katrin Wendland, University of Freiburg, Germany Honorary Editor Victor P. Maslov, Russian Academy of Sciences, Moscow, Russia Titles in planning include Yuri A. Bahturin, Identical Relations in Lie Algebras (2019) Yakov G. Berkovich and Z. Janko, Groups of Prime Power Order, Volume 6 (2019) Yakov G. Berkovich, Lev G. Kazarin, and Emmanuel M. Zhmud', Characters of Finite Groups, Volume 2 (2019) Jorge Herbert Soares de Lira, Variational Problems for Hypersurfaces in Riemannian Manifolds (2019) Volker Mayer, Mariusz Urbański, and Anna Zdunik, Random and Conformal Dynamical Systems (2021) Ioannis Diamantis, Boštjan Gabrovšek, Sofia Lambropoulou, and Maciej Mroczkowski, Knot Theory of Lens Spaces (2021)
Publisher: Walter de Gruyter
ISBN: 3110811189
Category : Mathematics
Languages : en
Pages : 305
Book Description
The aim of the series is to present new and important developments in pure and applied mathematics. Well established in the community over two decades, it offers a large library of mathematics including several important classics. The volumes supply thorough and detailed expositions of the methods and ideas essential to the topics in question. In addition, they convey their relationships to other parts of mathematics. The series is addressed to advanced readers wishing to thoroughly study the topic. Editorial Board Lev Birbrair, Universidade Federal do Ceará, Fortaleza, Brasil Walter D. Neumann, Columbia University, New York, USA Markus J. Pflaum, University of Colorado, Boulder, USA Dierk Schleicher, Jacobs University, Bremen, Germany Katrin Wendland, University of Freiburg, Germany Honorary Editor Victor P. Maslov, Russian Academy of Sciences, Moscow, Russia Titles in planning include Yuri A. Bahturin, Identical Relations in Lie Algebras (2019) Yakov G. Berkovich and Z. Janko, Groups of Prime Power Order, Volume 6 (2019) Yakov G. Berkovich, Lev G. Kazarin, and Emmanuel M. Zhmud', Characters of Finite Groups, Volume 2 (2019) Jorge Herbert Soares de Lira, Variational Problems for Hypersurfaces in Riemannian Manifolds (2019) Volker Mayer, Mariusz Urbański, and Anna Zdunik, Random and Conformal Dynamical Systems (2021) Ioannis Diamantis, Boštjan Gabrovšek, Sofia Lambropoulou, and Maciej Mroczkowski, Knot Theory of Lens Spaces (2021)
Measure, Integral and Probability
Author: Marek Capinski
Publisher: Springer Science & Business Media
ISBN: 1447136314
Category : Mathematics
Languages : en
Pages : 229
Book Description
This very well written and accessible book emphasizes the reasons for studying measure theory, which is the foundation of much of probability. By focusing on measure, many illustrative examples and applications, including a thorough discussion of standard probability distributions and densities, are opened. The book also includes many problems and their fully worked solutions.
Publisher: Springer Science & Business Media
ISBN: 1447136314
Category : Mathematics
Languages : en
Pages : 229
Book Description
This very well written and accessible book emphasizes the reasons for studying measure theory, which is the foundation of much of probability. By focusing on measure, many illustrative examples and applications, including a thorough discussion of standard probability distributions and densities, are opened. The book also includes many problems and their fully worked solutions.
Handbook of Elasticity Solutions
Author: Mark L. Kachanov
Publisher: Springer Science & Business Media
ISBN: 9781402014727
Category : Mathematics
Languages : en
Pages : 760
Book Description
This Handbook is intended as a desk reference for researchers, students and engineers working in various areas of solid mechanics and quantitative materials science. It contains a broad range of elasticity solutions. In particular, it covers the following topics: -Basic equations in various coordinate systems, -Green's functions for isotropic and anisotropic solids, -Cracks in two- and three-dimensional solids, -Eshelby's problems and related results, -Stress concentrations at inhomogeneities, -Contact problems, -Thermoelasticity. The solutions have been collected from a large number of monographs and research articles. Some of the presented results were obtained only recently and are not easily available. All solutions have been thoroughly checked and transformed to a userfriendly form.
Publisher: Springer Science & Business Media
ISBN: 9781402014727
Category : Mathematics
Languages : en
Pages : 760
Book Description
This Handbook is intended as a desk reference for researchers, students and engineers working in various areas of solid mechanics and quantitative materials science. It contains a broad range of elasticity solutions. In particular, it covers the following topics: -Basic equations in various coordinate systems, -Green's functions for isotropic and anisotropic solids, -Cracks in two- and three-dimensional solids, -Eshelby's problems and related results, -Stress concentrations at inhomogeneities, -Contact problems, -Thermoelasticity. The solutions have been collected from a large number of monographs and research articles. Some of the presented results were obtained only recently and are not easily available. All solutions have been thoroughly checked and transformed to a userfriendly form.
Stability Problems for Stochastic Models
Author: Vladimir V. Kalashnikov
Publisher: Springer
ISBN: 3540476458
Category : Mathematics
Languages : en
Pages : 238
Book Description
The subject of this book is a new direction in the field of probability theory and mathematical statistics which can be called "stability theory": it deals with evaluating the effects of perturbing initial probabilistic models and embraces quite varied subtopics: limit theorems, queueing models, statistical inference, probability metrics, etc. The contributions are original research articles developing new ideas and methods of stability analysis.
Publisher: Springer
ISBN: 3540476458
Category : Mathematics
Languages : en
Pages : 238
Book Description
The subject of this book is a new direction in the field of probability theory and mathematical statistics which can be called "stability theory": it deals with evaluating the effects of perturbing initial probabilistic models and embraces quite varied subtopics: limit theorems, queueing models, statistical inference, probability metrics, etc. The contributions are original research articles developing new ideas and methods of stability analysis.