Author: Giray Ökten
Publisher: Springer Nature
ISBN: 3030560708
Category : Mathematics
Languages : en
Pages : 158
Book Description
This undergraduate textbook presents an inquiry-based learning course in stochastic models and computing designed to serve as a first course in probability. Its modular structure complements a traditional lecture format, introducing new topics chapter by chapter with accompanying projects for group collaboration. The text addresses probability axioms leading to Bayes’ theorem, discrete and continuous random variables, Markov chains, and Brownian motion, as well as applications including randomized algorithms, randomized surveys, Benford’s law, and Monte Carlo methods. Adopting a unique application-driven approach to better study probability in action, the book emphasizes data, simulation, and games to strengthen reader insight and intuition while proving theorems. Additionally, the text incorporates codes and exercises in the Julia programming language to further promote a hands-on focus in modelling. Students should have prior knowledge of single variable calculus. Giray Ökten received his PhD from Claremont Graduate University. He has held academic positions at University of Alaska Fairbanks, Ball State University, and Florida State University. He received a Fulbright U.S. Scholar award in 2015. He is the author of an open access textbook in numerical analysis, First Semester in Numerical Analysis with Julia, published by Florida State University Libraries, and a co-author of a children’s math book, The Mathematical Investigations of Dr. O and Arya, published by Tumblehome. His research interests include Monte Carlo methods and computational finance.
Probability and Simulation
Author: Giray Ökten
Publisher: Springer Nature
ISBN: 3030560708
Category : Mathematics
Languages : en
Pages : 158
Book Description
This undergraduate textbook presents an inquiry-based learning course in stochastic models and computing designed to serve as a first course in probability. Its modular structure complements a traditional lecture format, introducing new topics chapter by chapter with accompanying projects for group collaboration. The text addresses probability axioms leading to Bayes’ theorem, discrete and continuous random variables, Markov chains, and Brownian motion, as well as applications including randomized algorithms, randomized surveys, Benford’s law, and Monte Carlo methods. Adopting a unique application-driven approach to better study probability in action, the book emphasizes data, simulation, and games to strengthen reader insight and intuition while proving theorems. Additionally, the text incorporates codes and exercises in the Julia programming language to further promote a hands-on focus in modelling. Students should have prior knowledge of single variable calculus. Giray Ökten received his PhD from Claremont Graduate University. He has held academic positions at University of Alaska Fairbanks, Ball State University, and Florida State University. He received a Fulbright U.S. Scholar award in 2015. He is the author of an open access textbook in numerical analysis, First Semester in Numerical Analysis with Julia, published by Florida State University Libraries, and a co-author of a children’s math book, The Mathematical Investigations of Dr. O and Arya, published by Tumblehome. His research interests include Monte Carlo methods and computational finance.
Publisher: Springer Nature
ISBN: 3030560708
Category : Mathematics
Languages : en
Pages : 158
Book Description
This undergraduate textbook presents an inquiry-based learning course in stochastic models and computing designed to serve as a first course in probability. Its modular structure complements a traditional lecture format, introducing new topics chapter by chapter with accompanying projects for group collaboration. The text addresses probability axioms leading to Bayes’ theorem, discrete and continuous random variables, Markov chains, and Brownian motion, as well as applications including randomized algorithms, randomized surveys, Benford’s law, and Monte Carlo methods. Adopting a unique application-driven approach to better study probability in action, the book emphasizes data, simulation, and games to strengthen reader insight and intuition while proving theorems. Additionally, the text incorporates codes and exercises in the Julia programming language to further promote a hands-on focus in modelling. Students should have prior knowledge of single variable calculus. Giray Ökten received his PhD from Claremont Graduate University. He has held academic positions at University of Alaska Fairbanks, Ball State University, and Florida State University. He received a Fulbright U.S. Scholar award in 2015. He is the author of an open access textbook in numerical analysis, First Semester in Numerical Analysis with Julia, published by Florida State University Libraries, and a co-author of a children’s math book, The Mathematical Investigations of Dr. O and Arya, published by Tumblehome. His research interests include Monte Carlo methods and computational finance.
Introduction to Probability Simulation and Gibbs Sampling with R
Author: Eric A. Suess
Publisher: Springer Science & Business Media
ISBN: 038740273X
Category : Mathematics
Languages : en
Pages : 317
Book Description
The first seven chapters use R for probability simulation and computation, including random number generation, numerical and Monte Carlo integration, and finding limiting distributions of Markov Chains with both discrete and continuous states. Applications include coverage probabilities of binomial confidence intervals, estimation of disease prevalence from screening tests, parallel redundancy for improved reliability of systems, and various kinds of genetic modeling. These initial chapters can be used for a non-Bayesian course in the simulation of applied probability models and Markov Chains. Chapters 8 through 10 give a brief introduction to Bayesian estimation and illustrate the use of Gibbs samplers to find posterior distributions and interval estimates, including some examples in which traditional methods do not give satisfactory results. WinBUGS software is introduced with a detailed explanation of its interface and examples of its use for Gibbs sampling for Bayesian estimation. No previous experience using R is required. An appendix introduces R, and complete R code is included for almost all computational examples and problems (along with comments and explanations). Noteworthy features of the book are its intuitive approach, presenting ideas with examples from biostatistics, reliability, and other fields; its large number of figures; and its extraordinarily large number of problems (about a third of the pages), ranging from simple drill to presentation of additional topics. Hints and answers are provided for many of the problems. These features make the book ideal for students of statistics at the senior undergraduate and at the beginning graduate levels.
Publisher: Springer Science & Business Media
ISBN: 038740273X
Category : Mathematics
Languages : en
Pages : 317
Book Description
The first seven chapters use R for probability simulation and computation, including random number generation, numerical and Monte Carlo integration, and finding limiting distributions of Markov Chains with both discrete and continuous states. Applications include coverage probabilities of binomial confidence intervals, estimation of disease prevalence from screening tests, parallel redundancy for improved reliability of systems, and various kinds of genetic modeling. These initial chapters can be used for a non-Bayesian course in the simulation of applied probability models and Markov Chains. Chapters 8 through 10 give a brief introduction to Bayesian estimation and illustrate the use of Gibbs samplers to find posterior distributions and interval estimates, including some examples in which traditional methods do not give satisfactory results. WinBUGS software is introduced with a detailed explanation of its interface and examples of its use for Gibbs sampling for Bayesian estimation. No previous experience using R is required. An appendix introduces R, and complete R code is included for almost all computational examples and problems (along with comments and explanations). Noteworthy features of the book are its intuitive approach, presenting ideas with examples from biostatistics, reliability, and other fields; its large number of figures; and its extraordinarily large number of problems (about a third of the pages), ranging from simple drill to presentation of additional topics. Hints and answers are provided for many of the problems. These features make the book ideal for students of statistics at the senior undergraduate and at the beginning graduate levels.
Simulation and the Monte Carlo Method
Author: Reuven Y. Rubinstein
Publisher: John Wiley & Sons
ISBN: 1118632389
Category : Mathematics
Languages : en
Pages : 470
Book Description
This accessible new edition explores the major topics in Monte Carlo simulation that have arisen over the past 30 years and presents a sound foundation for problem solving Simulation and the Monte Carlo Method, Third Edition reflects the latest developments in the field and presents a fully updated and comprehensive account of the state-of-the-art theory, methods and applications that have emerged in Monte Carlo simulation since the publication of the classic First Edition over more than a quarter of a century ago. While maintaining its accessible and intuitive approach, this revised edition features a wealth of up-to-date information that facilitates a deeper understanding of problem solving across a wide array of subject areas, such as engineering, statistics, computer science, mathematics, and the physical and life sciences. The book begins with a modernized introduction that addresses the basic concepts of probability, Markov processes, and convex optimization. Subsequent chapters discuss the dramatic changes that have occurred in the field of the Monte Carlo method, with coverage of many modern topics including: Markov Chain Monte Carlo, variance reduction techniques such as importance (re-)sampling, and the transform likelihood ratio method, the score function method for sensitivity analysis, the stochastic approximation method and the stochastic counter-part method for Monte Carlo optimization, the cross-entropy method for rare events estimation and combinatorial optimization, and application of Monte Carlo techniques for counting problems. An extensive range of exercises is provided at the end of each chapter, as well as a generous sampling of applied examples. The Third Edition features a new chapter on the highly versatile splitting method, with applications to rare-event estimation, counting, sampling, and optimization. A second new chapter introduces the stochastic enumeration method, which is a new fast sequential Monte Carlo method for tree search. In addition, the Third Edition features new material on: • Random number generation, including multiple-recursive generators and the Mersenne Twister • Simulation of Gaussian processes, Brownian motion, and diffusion processes • Multilevel Monte Carlo method • New enhancements of the cross-entropy (CE) method, including the “improved” CE method, which uses sampling from the zero-variance distribution to find the optimal importance sampling parameters • Over 100 algorithms in modern pseudo code with flow control • Over 25 new exercises Simulation and the Monte Carlo Method, Third Edition is an excellent text for upper-undergraduate and beginning graduate courses in stochastic simulation and Monte Carlo techniques. The book also serves as a valuable reference for professionals who would like to achieve a more formal understanding of the Monte Carlo method. Reuven Y. Rubinstein, DSc, was Professor Emeritus in the Faculty of Industrial Engineering and Management at Technion-Israel Institute of Technology. He served as a consultant at numerous large-scale organizations, such as IBM, Motorola, and NEC. The author of over 100 articles and six books, Dr. Rubinstein was also the inventor of the popular score-function method in simulation analysis and generic cross-entropy methods for combinatorial optimization and counting. Dirk P. Kroese, PhD, is a Professor of Mathematics and Statistics in the School of Mathematics and Physics of The University of Queensland, Australia. He has published over 100 articles and four books in a wide range of areas in applied probability and statistics, including Monte Carlo methods, cross-entropy, randomized algorithms, tele-traffic c theory, reliability, computational statistics, applied probability, and stochastic modeling.
Publisher: John Wiley & Sons
ISBN: 1118632389
Category : Mathematics
Languages : en
Pages : 470
Book Description
This accessible new edition explores the major topics in Monte Carlo simulation that have arisen over the past 30 years and presents a sound foundation for problem solving Simulation and the Monte Carlo Method, Third Edition reflects the latest developments in the field and presents a fully updated and comprehensive account of the state-of-the-art theory, methods and applications that have emerged in Monte Carlo simulation since the publication of the classic First Edition over more than a quarter of a century ago. While maintaining its accessible and intuitive approach, this revised edition features a wealth of up-to-date information that facilitates a deeper understanding of problem solving across a wide array of subject areas, such as engineering, statistics, computer science, mathematics, and the physical and life sciences. The book begins with a modernized introduction that addresses the basic concepts of probability, Markov processes, and convex optimization. Subsequent chapters discuss the dramatic changes that have occurred in the field of the Monte Carlo method, with coverage of many modern topics including: Markov Chain Monte Carlo, variance reduction techniques such as importance (re-)sampling, and the transform likelihood ratio method, the score function method for sensitivity analysis, the stochastic approximation method and the stochastic counter-part method for Monte Carlo optimization, the cross-entropy method for rare events estimation and combinatorial optimization, and application of Monte Carlo techniques for counting problems. An extensive range of exercises is provided at the end of each chapter, as well as a generous sampling of applied examples. The Third Edition features a new chapter on the highly versatile splitting method, with applications to rare-event estimation, counting, sampling, and optimization. A second new chapter introduces the stochastic enumeration method, which is a new fast sequential Monte Carlo method for tree search. In addition, the Third Edition features new material on: • Random number generation, including multiple-recursive generators and the Mersenne Twister • Simulation of Gaussian processes, Brownian motion, and diffusion processes • Multilevel Monte Carlo method • New enhancements of the cross-entropy (CE) method, including the “improved” CE method, which uses sampling from the zero-variance distribution to find the optimal importance sampling parameters • Over 100 algorithms in modern pseudo code with flow control • Over 25 new exercises Simulation and the Monte Carlo Method, Third Edition is an excellent text for upper-undergraduate and beginning graduate courses in stochastic simulation and Monte Carlo techniques. The book also serves as a valuable reference for professionals who would like to achieve a more formal understanding of the Monte Carlo method. Reuven Y. Rubinstein, DSc, was Professor Emeritus in the Faculty of Industrial Engineering and Management at Technion-Israel Institute of Technology. He served as a consultant at numerous large-scale organizations, such as IBM, Motorola, and NEC. The author of over 100 articles and six books, Dr. Rubinstein was also the inventor of the popular score-function method in simulation analysis and generic cross-entropy methods for combinatorial optimization and counting. Dirk P. Kroese, PhD, is a Professor of Mathematics and Statistics in the School of Mathematics and Physics of The University of Queensland, Australia. He has published over 100 articles and four books in a wide range of areas in applied probability and statistics, including Monte Carlo methods, cross-entropy, randomized algorithms, tele-traffic c theory, reliability, computational statistics, applied probability, and stochastic modeling.
Stochastic Simulation: Algorithms and Analysis
Author: Søren Asmussen
Publisher: Springer Science & Business Media
ISBN: 0387690336
Category : Mathematics
Languages : en
Pages : 490
Book Description
Sampling-based computational methods have become a fundamental part of the numerical toolset of practitioners and researchers across an enormous number of different applied domains and academic disciplines. This book provides a broad treatment of such sampling-based methods, as well as accompanying mathematical analysis of the convergence properties of the methods discussed. The reach of the ideas is illustrated by discussing a wide range of applications and the models that have found wide usage. The first half of the book focuses on general methods; the second half discusses model-specific algorithms. Exercises and illustrations are included.
Publisher: Springer Science & Business Media
ISBN: 0387690336
Category : Mathematics
Languages : en
Pages : 490
Book Description
Sampling-based computational methods have become a fundamental part of the numerical toolset of practitioners and researchers across an enormous number of different applied domains and academic disciplines. This book provides a broad treatment of such sampling-based methods, as well as accompanying mathematical analysis of the convergence properties of the methods discussed. The reach of the ideas is illustrated by discussing a wide range of applications and the models that have found wide usage. The first half of the book focuses on general methods; the second half discusses model-specific algorithms. Exercises and illustrations are included.
Simulation
Author: Sheldon M. Ross
Publisher: Academic Press
ISBN: 0124158250
Category : Computers
Languages : en
Pages : 326
Book Description
"In formulating a stochastic model to describe a real phenomenon, it used to be that one compromised between choosing a model that is a realistic replica of the actual situation and choosing one whose mathematical analysis is tractable. That is, there did not seem to be any payoff in choosing a model that faithfully conformed to the phenomenon under study if it were not possible to mathematically analyze that model. Similar considerations have led to the concentration on asymptotic or steady-state results as opposed to the more useful ones on transient time. However, the relatively recent advent of fast and inexpensive computational power has opened up another approach--namely, to try to model the phenomenon as faithfully as possible and then to rely on a simulation study to analyze it"--
Publisher: Academic Press
ISBN: 0124158250
Category : Computers
Languages : en
Pages : 326
Book Description
"In formulating a stochastic model to describe a real phenomenon, it used to be that one compromised between choosing a model that is a realistic replica of the actual situation and choosing one whose mathematical analysis is tractable. That is, there did not seem to be any payoff in choosing a model that faithfully conformed to the phenomenon under study if it were not possible to mathematically analyze that model. Similar considerations have led to the concentration on asymptotic or steady-state results as opposed to the more useful ones on transient time. However, the relatively recent advent of fast and inexpensive computational power has opened up another approach--namely, to try to model the phenomenon as faithfully as possible and then to rely on a simulation study to analyze it"--
Probability, Markov Chains, Queues, and Simulation
Author: William J. Stewart
Publisher: Princeton University Press
ISBN: 1400832810
Category : Mathematics
Languages : en
Pages : 777
Book Description
Probability, Markov Chains, Queues, and Simulation provides a modern and authoritative treatment of the mathematical processes that underlie performance modeling. The detailed explanations of mathematical derivations and numerous illustrative examples make this textbook readily accessible to graduate and advanced undergraduate students taking courses in which stochastic processes play a fundamental role. The textbook is relevant to a wide variety of fields, including computer science, engineering, operations research, statistics, and mathematics. The textbook looks at the fundamentals of probability theory, from the basic concepts of set-based probability, through probability distributions, to bounds, limit theorems, and the laws of large numbers. Discrete and continuous-time Markov chains are analyzed from a theoretical and computational point of view. Topics include the Chapman-Kolmogorov equations; irreducibility; the potential, fundamental, and reachability matrices; random walk problems; reversibility; renewal processes; and the numerical computation of stationary and transient distributions. The M/M/1 queue and its extensions to more general birth-death processes are analyzed in detail, as are queues with phase-type arrival and service processes. The M/G/1 and G/M/1 queues are solved using embedded Markov chains; the busy period, residual service time, and priority scheduling are treated. Open and closed queueing networks are analyzed. The final part of the book addresses the mathematical basis of simulation. Each chapter of the textbook concludes with an extensive set of exercises. An instructor's solution manual, in which all exercises are completely worked out, is also available (to professors only). Numerous examples illuminate the mathematical theories Carefully detailed explanations of mathematical derivations guarantee a valuable pedagogical approach Each chapter concludes with an extensive set of exercises
Publisher: Princeton University Press
ISBN: 1400832810
Category : Mathematics
Languages : en
Pages : 777
Book Description
Probability, Markov Chains, Queues, and Simulation provides a modern and authoritative treatment of the mathematical processes that underlie performance modeling. The detailed explanations of mathematical derivations and numerous illustrative examples make this textbook readily accessible to graduate and advanced undergraduate students taking courses in which stochastic processes play a fundamental role. The textbook is relevant to a wide variety of fields, including computer science, engineering, operations research, statistics, and mathematics. The textbook looks at the fundamentals of probability theory, from the basic concepts of set-based probability, through probability distributions, to bounds, limit theorems, and the laws of large numbers. Discrete and continuous-time Markov chains are analyzed from a theoretical and computational point of view. Topics include the Chapman-Kolmogorov equations; irreducibility; the potential, fundamental, and reachability matrices; random walk problems; reversibility; renewal processes; and the numerical computation of stationary and transient distributions. The M/M/1 queue and its extensions to more general birth-death processes are analyzed in detail, as are queues with phase-type arrival and service processes. The M/G/1 and G/M/1 queues are solved using embedded Markov chains; the busy period, residual service time, and priority scheduling are treated. Open and closed queueing networks are analyzed. The final part of the book addresses the mathematical basis of simulation. Each chapter of the textbook concludes with an extensive set of exercises. An instructor's solution manual, in which all exercises are completely worked out, is also available (to professors only). Numerous examples illuminate the mathematical theories Carefully detailed explanations of mathematical derivations guarantee a valuable pedagogical approach Each chapter concludes with an extensive set of exercises
Stochastic Simulation
Author: Brian D. Ripley
Publisher: John Wiley & Sons
ISBN: 0470317388
Category : Mathematics
Languages : en
Pages : 258
Book Description
WILEY-INTERSCIENCE PAPERBACK SERIES The Wiley-Interscience Paperback Series consists of selected books that have been made more accessible to consumers in an effort to increase global appeal and general circulation. With these new unabridged softcover volumes, Wiley hopes to extend the lives of these works by making them available to future generations of statisticians, mathematicians, and scientists. ". . .this is a very competently written and useful addition to the statistical literature; a book every statistician should look at and that many should study!" —Short Book Reviews, International Statistical Institute ". . .reading this book was an enjoyable learning experience. The suggestions and recommendations on the methods [make] this book an excellent reference for anyone interested in simulation. With its compact structure and good coverage of material, it [is] an excellent textbook for a simulation course." —Technometrics ". . .this work is an excellent comprehensive guide to simulation methods, written by a very competent author. It is especially recommended for those users of simulation methods who want more than a 'cook book'. " —Mathematics Abstracts This book is a comprehensive guide to simulation methods with explicit recommendations of methods and algorithms. It covers both the technical aspects of the subject, such as the generation of random numbers, non-uniform random variates and stochastic processes, and the use of simulation. Supported by the relevant mathematical theory, the text contains a great deal of unpublished research material, including coverage of the analysis of shift-register generators, sensitivity analysis of normal variate generators, analysis of simulation output, and more.
Publisher: John Wiley & Sons
ISBN: 0470317388
Category : Mathematics
Languages : en
Pages : 258
Book Description
WILEY-INTERSCIENCE PAPERBACK SERIES The Wiley-Interscience Paperback Series consists of selected books that have been made more accessible to consumers in an effort to increase global appeal and general circulation. With these new unabridged softcover volumes, Wiley hopes to extend the lives of these works by making them available to future generations of statisticians, mathematicians, and scientists. ". . .this is a very competently written and useful addition to the statistical literature; a book every statistician should look at and that many should study!" —Short Book Reviews, International Statistical Institute ". . .reading this book was an enjoyable learning experience. The suggestions and recommendations on the methods [make] this book an excellent reference for anyone interested in simulation. With its compact structure and good coverage of material, it [is] an excellent textbook for a simulation course." —Technometrics ". . .this work is an excellent comprehensive guide to simulation methods, written by a very competent author. It is especially recommended for those users of simulation methods who want more than a 'cook book'. " —Mathematics Abstracts This book is a comprehensive guide to simulation methods with explicit recommendations of methods and algorithms. It covers both the technical aspects of the subject, such as the generation of random numbers, non-uniform random variates and stochastic processes, and the use of simulation. Supported by the relevant mathematical theory, the text contains a great deal of unpublished research material, including coverage of the analysis of shift-register generators, sensitivity analysis of normal variate generators, analysis of simulation output, and more.
Simulation and Monte Carlo
Author: J. S. Dagpunar
Publisher: John Wiley & Sons
ISBN: 0470061340
Category : Mathematics
Languages : en
Pages : 348
Book Description
Simulation and Monte Carlo is aimed at students studying for degrees in Mathematics, Statistics, Financial Mathematics, Operational Research, Computer Science, and allied subjects, who wish an up-to-date account of the theory and practice of Simulation. Its distinguishing features are in-depth accounts of the theory of Simulation, including the important topic of variance reduction techniques, together with illustrative applications in Financial Mathematics, Markov chain Monte Carlo, and Discrete Event Simulation. Each chapter contains a good selection of exercises and solutions with an accompanying appendix comprising a Maple worksheet containing simulation procedures. The worksheets can also be downloaded from the web site supporting the book. This encourages readers to adopt a hands-on approach in the effective design of simulation experiments. Arising from a course taught at Edinburgh University over several years, the book will also appeal to practitioners working in the finance industry, statistics and operations research.
Publisher: John Wiley & Sons
ISBN: 0470061340
Category : Mathematics
Languages : en
Pages : 348
Book Description
Simulation and Monte Carlo is aimed at students studying for degrees in Mathematics, Statistics, Financial Mathematics, Operational Research, Computer Science, and allied subjects, who wish an up-to-date account of the theory and practice of Simulation. Its distinguishing features are in-depth accounts of the theory of Simulation, including the important topic of variance reduction techniques, together with illustrative applications in Financial Mathematics, Markov chain Monte Carlo, and Discrete Event Simulation. Each chapter contains a good selection of exercises and solutions with an accompanying appendix comprising a Maple worksheet containing simulation procedures. The worksheets can also be downloaded from the web site supporting the book. This encourages readers to adopt a hands-on approach in the effective design of simulation experiments. Arising from a course taught at Edinburgh University over several years, the book will also appeal to practitioners working in the finance industry, statistics and operations research.
Geostatistics Tróia '92
Author: A.O. Soares
Publisher: Springer Science & Business Media
ISBN: 940111739X
Category : Science
Languages : en
Pages : 1097
Book Description
The contributions in this book were presented at the Fourth International Geostatistics Congress held in Tróia, Portugal, in September 1992. They provide a comprehensive account of the current state of the art of geostatistics, including recent theoretical developments and new applications. In particular, readers will find descriptions and applications of the more recent methods of stochastic simulation together with data integration techniques applied to the modelling of hydrocabon reservoirs. In other fields there are stationary and non-stationary geostatistical applications to geology, climatology, pollution control, soil science, hydrology and human sciences. The papers also provide an insight into new trends in geostatistics particularly the increasing interaction with many other scientific disciplines. This book is a significant reference work for practitioners of geostatistics both in academia and industry.
Publisher: Springer Science & Business Media
ISBN: 940111739X
Category : Science
Languages : en
Pages : 1097
Book Description
The contributions in this book were presented at the Fourth International Geostatistics Congress held in Tróia, Portugal, in September 1992. They provide a comprehensive account of the current state of the art of geostatistics, including recent theoretical developments and new applications. In particular, readers will find descriptions and applications of the more recent methods of stochastic simulation together with data integration techniques applied to the modelling of hydrocabon reservoirs. In other fields there are stationary and non-stationary geostatistical applications to geology, climatology, pollution control, soil science, hydrology and human sciences. The papers also provide an insight into new trends in geostatistics particularly the increasing interaction with many other scientific disciplines. This book is a significant reference work for practitioners of geostatistics both in academia and industry.
Modern Simulation and Modeling
Author: Reuven Y. Rubinstein
Publisher: Wiley-Interscience
ISBN:
Category : Mathematics
Languages : en
Pages : 392
Book Description
A step-by-step guide for today's modeling and simulation practices This new guide for modeling and simulation of discrete-event systems (DES) demonstrates why simulation is fast becoming the method of choice for the evaluation of system performance in science, engineering, and management. The book begins with the basics of conventional simulation, then proceeds to modern simulation-treating sensitivity analysis and optimization in a wide range of systems that exhibit complex interaction of discrete events. These include communications networks, flexible manufacturing systems, PERT (project evaluation and review techniques) networks, queueing systems, and more. Less focused on theory than on presenting a clear approach to practical applications, Modern Simulation and Modeling: * Emphasizes concepts rather than mathematical completeness * Integrates references and explanations of complex topics into the body of the text * Provides an innovative chapter on rare-event probability estimation * Describes the implementation of the score function (SF) method using the NSO simulation package * Features 40 illustrations and numerous algorithms * Offers extensive, end-of-chapter exercise sets * Includes chapter bibliographies for further reading Modern Simulation and Modeling is an essential text for graduate students of DES and stochastic processes and for undergraduate students in simulation. It is also an excellent reference for professionals in statistics and probability, mathematics, and management science.
Publisher: Wiley-Interscience
ISBN:
Category : Mathematics
Languages : en
Pages : 392
Book Description
A step-by-step guide for today's modeling and simulation practices This new guide for modeling and simulation of discrete-event systems (DES) demonstrates why simulation is fast becoming the method of choice for the evaluation of system performance in science, engineering, and management. The book begins with the basics of conventional simulation, then proceeds to modern simulation-treating sensitivity analysis and optimization in a wide range of systems that exhibit complex interaction of discrete events. These include communications networks, flexible manufacturing systems, PERT (project evaluation and review techniques) networks, queueing systems, and more. Less focused on theory than on presenting a clear approach to practical applications, Modern Simulation and Modeling: * Emphasizes concepts rather than mathematical completeness * Integrates references and explanations of complex topics into the body of the text * Provides an innovative chapter on rare-event probability estimation * Describes the implementation of the score function (SF) method using the NSO simulation package * Features 40 illustrations and numerous algorithms * Offers extensive, end-of-chapter exercise sets * Includes chapter bibliographies for further reading Modern Simulation and Modeling is an essential text for graduate students of DES and stochastic processes and for undergraduate students in simulation. It is also an excellent reference for professionals in statistics and probability, mathematics, and management science.