Probabilistic Models of the Brain

Probabilistic Models of the Brain PDF Author: Rajesh P.N. Rao
Publisher: MIT Press
ISBN: 9780262264327
Category : Medical
Languages : en
Pages : 348

Get Book Here

Book Description
A survey of probabilistic approaches to modeling and understanding brain function. Neurophysiological, neuroanatomical, and brain imaging studies have helped to shed light on how the brain transforms raw sensory information into a form that is useful for goal-directed behavior. A fundamental question that is seldom addressed by these studies, however, is why the brain uses the types of representations it does and what evolutionary advantage, if any, these representations confer. It is difficult to address such questions directly via animal experiments. A promising alternative is to use probabilistic principles such as maximum likelihood and Bayesian inference to derive models of brain function. This book surveys some of the current probabilistic approaches to modeling and understanding brain function. Although most of the examples focus on vision, many of the models and techniques are applicable to other modalities as well. The book presents top-down computational models as well as bottom-up neurally motivated models of brain function. The topics covered include Bayesian and information-theoretic models of perception, probabilistic theories of neural coding and spike timing, computational models of lateral and cortico-cortical feedback connections, and the development of receptive field properties from natural signals.

Probabilistic Models of the Brain

Probabilistic Models of the Brain PDF Author: Rajesh P.N. Rao
Publisher: MIT Press
ISBN: 9780262264327
Category : Medical
Languages : en
Pages : 348

Get Book Here

Book Description
A survey of probabilistic approaches to modeling and understanding brain function. Neurophysiological, neuroanatomical, and brain imaging studies have helped to shed light on how the brain transforms raw sensory information into a form that is useful for goal-directed behavior. A fundamental question that is seldom addressed by these studies, however, is why the brain uses the types of representations it does and what evolutionary advantage, if any, these representations confer. It is difficult to address such questions directly via animal experiments. A promising alternative is to use probabilistic principles such as maximum likelihood and Bayesian inference to derive models of brain function. This book surveys some of the current probabilistic approaches to modeling and understanding brain function. Although most of the examples focus on vision, many of the models and techniques are applicable to other modalities as well. The book presents top-down computational models as well as bottom-up neurally motivated models of brain function. The topics covered include Bayesian and information-theoretic models of perception, probabilistic theories of neural coding and spike timing, computational models of lateral and cortico-cortical feedback connections, and the development of receptive field properties from natural signals.

Bayesian Brain

Bayesian Brain PDF Author: Kenji Doya
Publisher: MIT Press
ISBN: 026204238X
Category : Bayesian statistical decision theory
Languages : en
Pages : 341

Get Book Here

Book Description
Experimental and theoretical neuroscientists use Bayesian approaches to analyze the brain mechanisms of perception, decision-making, and motor control.

Computational Models of Brain and Behavior

Computational Models of Brain and Behavior PDF Author: Ahmed A. Moustafa
Publisher: John Wiley & Sons
ISBN: 1119159067
Category : Psychology
Languages : en
Pages : 586

Get Book Here

Book Description
A comprehensive Introduction to the world of brain and behavior computational models This book provides a broad collection of articles covering different aspects of computational modeling efforts in psychology and neuroscience. Specifically, it discusses models that span different brain regions (hippocampus, amygdala, basal ganglia, visual cortex), different species (humans, rats, fruit flies), and different modeling methods (neural network, Bayesian, reinforcement learning, data fitting, and Hodgkin-Huxley models, among others). Computational Models of Brain and Behavior is divided into four sections: (a) Models of brain disorders; (b) Neural models of behavioral processes; (c) Models of neural processes, brain regions and neurotransmitters, and (d) Neural modeling approaches. It provides in-depth coverage of models of psychiatric disorders, including depression, posttraumatic stress disorder (PTSD), schizophrenia, and dyslexia; models of neurological disorders, including Alzheimer’s disease, Parkinson’s disease, and epilepsy; early sensory and perceptual processes; models of olfaction; higher/systems level models and low-level models; Pavlovian and instrumental conditioning; linking information theory to neurobiology; and more. Covers computational approximations to intellectual disability in down syndrome Discusses computational models of pharmacological and immunological treatment in Alzheimer's disease Examines neural circuit models of serotonergic system (from microcircuits to cognition) Educates on information theory, memory, prediction, and timing in associative learning Computational Models of Brain and Behavior is written for advanced undergraduate, Master's and PhD-level students—as well as researchers involved in computational neuroscience modeling research.

Decisions, Uncertainty, and the Brain

Decisions, Uncertainty, and the Brain PDF Author: Paul W. Glimcher
Publisher: MIT Press
ISBN: 9780262572279
Category : Medical
Languages : en
Pages : 404

Get Book Here

Book Description
In this provocative book, Paul Glimcher argues that economic theory may provide an alternative to the classical Cartesian model of the brain and behavior. Glimcher argues that Cartesian dualism operates from the false premise that the reflex is able to describe behavior in the real world that animals inhabit. A mathematically rich cognitive theory, he claims, could solve the most difficult problems that any environment could present, eliminating the need for dualism by eliminating the need for a reflex theory. Such a mathematically rigorous description of the neural processes that connect sensation and action, he explains, will have its roots in microeconomic theory. Economic theory allows physiologists to define both the optimal course of action that an animal might select and a mathematical route by which that optimal solution can be derived. Glimcher outlines what an economics-based cognitive model might look like and how one would begin to test it empirically. Along the way, he presents a fascinating history of neuroscience. He also discusses related questions about determinism, free will, and the stochastic nature of complex behavior.

Bayesian Rationality

Bayesian Rationality PDF Author: Mike Oaksford
Publisher: Oxford University Press
ISBN: 0198524498
Category : Philosophy
Languages : en
Pages : 342

Get Book Here

Book Description
For almost 2,500 years, the Western concept of what is to be human has been dominated by the idea that the mind is the seat of reason - humans are, almost by definition, the rational animal. In this text a more radical suggestion for explaining these puzzling aspects of human reasoning is put forward.

Goal-Directed Decision Making

Goal-Directed Decision Making PDF Author: Richard W. Morris
Publisher: Academic Press
ISBN: 0128120991
Category : Psychology
Languages : en
Pages : 486

Get Book Here

Book Description
Goal-Directed Decision Making: Computations and Neural Circuits examines the role of goal-directed choice. It begins with an examination of the computations performed by associated circuits, but then moves on to in-depth examinations on how goal-directed learning interacts with other forms of choice and response selection. This is the only book that embraces the multidisciplinary nature of this area of decision-making, integrating our knowledge of goal-directed decision-making from basic, computational, clinical, and ethology research into a single resource that is invaluable for neuroscientists, psychologists and computer scientists alike. The book presents discussions on the broader field of decision-making and how it has expanded to incorporate ideas related to flexible behaviors, such as cognitive control, economic choice, and Bayesian inference, as well as the influences that motivation, context and cues have on behavior and decision-making. - Details the neural circuits functionally involved in goal-directed decision-making and the computations these circuits perform - Discusses changes in goal-directed decision-making spurred by development and disorders, and within real-world applications, including social contexts and addiction - Synthesizes neuroscience, psychology and computer science research to offer a unique perspective on the central and emerging issues in goal-directed decision-making

The Noisy Brain

The Noisy Brain PDF Author: Edmund T. Rolls
Publisher:
ISBN:
Category : Mathematics
Languages : en
Pages : 334

Get Book Here

Book Description
The activity of neurons in the brain is noisy in that the neuronal firing times are random for a given mean rate. The Noisy Brain shows that this is fundamental to understanding many aspects of brain function, including probabilistic decision-making, perception, memory recall, short-term memory, attention, and even creativity. There are many applications too of this understanding, to for example memory and attentional disorders, aging, schizophrenia, and obsessive-compulsive disorder.

Active Inference

Active Inference PDF Author: Thomas Parr
Publisher: MIT Press
ISBN: 0262362287
Category : Science
Languages : en
Pages : 313

Get Book Here

Book Description
The first comprehensive treatment of active inference, an integrative perspective on brain, cognition, and behavior used across multiple disciplines. Active inference is a way of understanding sentient behavior—a theory that characterizes perception, planning, and action in terms of probabilistic inference. Developed by theoretical neuroscientist Karl Friston over years of groundbreaking research, active inference provides an integrated perspective on brain, cognition, and behavior that is increasingly used across multiple disciplines including neuroscience, psychology, and philosophy. Active inference puts the action into perception. This book offers the first comprehensive treatment of active inference, covering theory, applications, and cognitive domains. Active inference is a “first principles” approach to understanding behavior and the brain, framed in terms of a single imperative to minimize free energy. The book emphasizes the implications of the free energy principle for understanding how the brain works. It first introduces active inference both conceptually and formally, contextualizing it within current theories of cognition. It then provides specific examples of computational models that use active inference to explain such cognitive phenomena as perception, attention, memory, and planning.

Data-Driven Computational Neuroscience

Data-Driven Computational Neuroscience PDF Author: Concha Bielza
Publisher: Cambridge University Press
ISBN: 110849370X
Category : Computers
Languages : en
Pages : 709

Get Book Here

Book Description
Trains researchers and graduate students in state-of-the-art statistical and machine learning methods to build models with real-world data.

Quantum Models of Cognition and Decision

Quantum Models of Cognition and Decision PDF Author: Jerome R. Busemeyer
Publisher: Cambridge University Press
ISBN: 110701199X
Category : Business & Economics
Languages : en
Pages : 425

Get Book Here

Book Description
Introduces principles drawn from quantum theory to present a new framework for modeling human cognition and decision.