Author: Senentxu Lanceros-Méndez
Publisher: John Wiley & Sons
ISBN: 1119287421
Category : Technology & Engineering
Languages : en
Pages : 270
Book Description
Offers the first comprehensive account of this interesting and growing research field Printed Batteries: Materials, Technologies and Applications reviews the current state of the art for printed batteries, discussing the different types and materials, and describing the printing techniques. It addresses the main applications that are being developed for printed batteries as well as the major advantages and remaining challenges that exist in this rapidly evolving area of research. It is the first book on printed batteries that seeks to promote a deeper understanding of this increasingly relevant research and application area. It is written in a way so as to interest and motivate readers to tackle the many challenges that lie ahead so that the entire research community can provide the world with a bright, innovative future in the area of printed batteries. Topics covered in Printed Batteries include, Printed Batteries: Definition, Types and Advantages; Printing Techniques for Batteries, Including 3D Printing; Inks Formulation and Properties for Printing Techniques; Rheological Properties for Electrode Slurry; Solid Polymer Electrolytes for Printed Batteries; Printed Battery Design; and Printed Battery Applications. Covers everything readers need to know about the materials and techniques required for printed batteries Informs on the applications for printed batteries and what the benefits are Discusses the challenges that lie ahead as innovators continue with their research Printed Batteries: Materials, Technologies and Applications is a unique and informative book that will appeal to academic researchers, industrial scientists, and engineers working in the areas of sensors, actuators, energy storage, and printed electronics.
Printed Batteries
Author: Senentxu Lanceros-Méndez
Publisher: John Wiley & Sons
ISBN: 1119287421
Category : Technology & Engineering
Languages : en
Pages : 270
Book Description
Offers the first comprehensive account of this interesting and growing research field Printed Batteries: Materials, Technologies and Applications reviews the current state of the art for printed batteries, discussing the different types and materials, and describing the printing techniques. It addresses the main applications that are being developed for printed batteries as well as the major advantages and remaining challenges that exist in this rapidly evolving area of research. It is the first book on printed batteries that seeks to promote a deeper understanding of this increasingly relevant research and application area. It is written in a way so as to interest and motivate readers to tackle the many challenges that lie ahead so that the entire research community can provide the world with a bright, innovative future in the area of printed batteries. Topics covered in Printed Batteries include, Printed Batteries: Definition, Types and Advantages; Printing Techniques for Batteries, Including 3D Printing; Inks Formulation and Properties for Printing Techniques; Rheological Properties for Electrode Slurry; Solid Polymer Electrolytes for Printed Batteries; Printed Battery Design; and Printed Battery Applications. Covers everything readers need to know about the materials and techniques required for printed batteries Informs on the applications for printed batteries and what the benefits are Discusses the challenges that lie ahead as innovators continue with their research Printed Batteries: Materials, Technologies and Applications is a unique and informative book that will appeal to academic researchers, industrial scientists, and engineers working in the areas of sensors, actuators, energy storage, and printed electronics.
Publisher: John Wiley & Sons
ISBN: 1119287421
Category : Technology & Engineering
Languages : en
Pages : 270
Book Description
Offers the first comprehensive account of this interesting and growing research field Printed Batteries: Materials, Technologies and Applications reviews the current state of the art for printed batteries, discussing the different types and materials, and describing the printing techniques. It addresses the main applications that are being developed for printed batteries as well as the major advantages and remaining challenges that exist in this rapidly evolving area of research. It is the first book on printed batteries that seeks to promote a deeper understanding of this increasingly relevant research and application area. It is written in a way so as to interest and motivate readers to tackle the many challenges that lie ahead so that the entire research community can provide the world with a bright, innovative future in the area of printed batteries. Topics covered in Printed Batteries include, Printed Batteries: Definition, Types and Advantages; Printing Techniques for Batteries, Including 3D Printing; Inks Formulation and Properties for Printing Techniques; Rheological Properties for Electrode Slurry; Solid Polymer Electrolytes for Printed Batteries; Printed Battery Design; and Printed Battery Applications. Covers everything readers need to know about the materials and techniques required for printed batteries Informs on the applications for printed batteries and what the benefits are Discusses the challenges that lie ahead as innovators continue with their research Printed Batteries: Materials, Technologies and Applications is a unique and informative book that will appeal to academic researchers, industrial scientists, and engineers working in the areas of sensors, actuators, energy storage, and printed electronics.
3D Printing for Energy Applications
Author: Albert Tarancón
Publisher: John Wiley & Sons
ISBN: 1119560780
Category : Technology & Engineering
Languages : en
Pages : 48
Book Description
3D PRINTING FOR ENERGY APPLICATIONS Explore current and future perspectives of 3D printing for the fabrication of high value-added complex devices 3D Printing for Energy Applications delivers an insightful and cutting-edge exploration of the applications of 3D printing to the fabrication of complex devices in the energy sector. The book covers aspects related to additive manufacturing of functional materials with applicability in the energy sector. It reviews both the technology of printable materials and 3D printing strategies itself, and its use in energy devices or systems. Split into three sections, the book covers the 3D printing of functional materials before delving into the 3D printing of energy devices. It closes with printing challenges in the production of complex objects. It also presents an interesting perspective on the future of 3D printing of complex devices. Readers will also benefit from the inclusion of: A thorough introduction to 3D printing of functional materials, including metals, ceramics, and composites An exploration of 3D printing challenges for production of complex objects, including computational design, multimaterials, tailoring AM components, and volumetric additive manufacturing Practical discussions of 3D printing of energy devices, including batteries, supercaps, solar panels, fuel cells, turbomachinery, thermoelectrics, and CCUS Perfect for materials scientists, 3D Printing for Energy Applications will also earn a place in the libraries of graduate students in engineering, chemistry, and material sciences seeking a one-stop reference for current and future perspectives on 3D printing of high value-added complex devices.
Publisher: John Wiley & Sons
ISBN: 1119560780
Category : Technology & Engineering
Languages : en
Pages : 48
Book Description
3D PRINTING FOR ENERGY APPLICATIONS Explore current and future perspectives of 3D printing for the fabrication of high value-added complex devices 3D Printing for Energy Applications delivers an insightful and cutting-edge exploration of the applications of 3D printing to the fabrication of complex devices in the energy sector. The book covers aspects related to additive manufacturing of functional materials with applicability in the energy sector. It reviews both the technology of printable materials and 3D printing strategies itself, and its use in energy devices or systems. Split into three sections, the book covers the 3D printing of functional materials before delving into the 3D printing of energy devices. It closes with printing challenges in the production of complex objects. It also presents an interesting perspective on the future of 3D printing of complex devices. Readers will also benefit from the inclusion of: A thorough introduction to 3D printing of functional materials, including metals, ceramics, and composites An exploration of 3D printing challenges for production of complex objects, including computational design, multimaterials, tailoring AM components, and volumetric additive manufacturing Practical discussions of 3D printing of energy devices, including batteries, supercaps, solar panels, fuel cells, turbomachinery, thermoelectrics, and CCUS Perfect for materials scientists, 3D Printing for Energy Applications will also earn a place in the libraries of graduate students in engineering, chemistry, and material sciences seeking a one-stop reference for current and future perspectives on 3D printing of high value-added complex devices.
3D Printing
Author: Ram K. Gupta
Publisher: CRC Press
ISBN: 1000850048
Category : Science
Languages : en
Pages : 507
Book Description
3D Printing: Fundamentals to Emerging Applications discusses the fundamentals of 3D-printing technologies and their emerging applications in many important sectors such as energy, biomedicals, and sensors. Top international authors in their fields cover the fundamentals of 3D-printing technologies for batteries, supercapacitors, fuel cells, sensors, and biomedical and other emerging applications. They also address current challenges and possible solutions in 3D-printing technologies for advanced applications. Key features: Addresses the state-of-the-art progress and challenges in 3D-printing technologies Explores the use of various materials in 3D printing for advanced applications Covers fundamentals of the electrochemical behavior of various materials for energy applications Provides new direction and enables understanding of the chemistry, electrochemical properties, and technologies for 3D printing This is a must-have resource for students as well as researchers and industry professionals working in energy, biomedicine, materials, and nanotechnology.
Publisher: CRC Press
ISBN: 1000850048
Category : Science
Languages : en
Pages : 507
Book Description
3D Printing: Fundamentals to Emerging Applications discusses the fundamentals of 3D-printing technologies and their emerging applications in many important sectors such as energy, biomedicals, and sensors. Top international authors in their fields cover the fundamentals of 3D-printing technologies for batteries, supercapacitors, fuel cells, sensors, and biomedical and other emerging applications. They also address current challenges and possible solutions in 3D-printing technologies for advanced applications. Key features: Addresses the state-of-the-art progress and challenges in 3D-printing technologies Explores the use of various materials in 3D printing for advanced applications Covers fundamentals of the electrochemical behavior of various materials for energy applications Provides new direction and enables understanding of the chemistry, electrochemical properties, and technologies for 3D printing This is a must-have resource for students as well as researchers and industry professionals working in energy, biomedicine, materials, and nanotechnology.
Innovative Technologies for Printing and Packaging
Author: Min Xu
Publisher: Springer Nature
ISBN: 9811990247
Category : Technology & Engineering
Languages : en
Pages : 663
Book Description
This book includes original, peer-reviewed research papers from the 13th China Academic Conference on Printing and Packaging (CACPP 2022), held in Jinan, China, on November 10-12, 2022. The proceedings cover the recent findings in color science and technology, image processing technology, digital media technology, mechanical and electronic engineering and numerical control, materials and detection, digital process management technology in printing and packaging, and other technologies. As such, the book is of interest to university researchers, R&D engineers, and graduate students in the field of graphic arts, packaging, color science, image science, material science, computer science, digital media, network technology, and smart manufacturing technology.
Publisher: Springer Nature
ISBN: 9811990247
Category : Technology & Engineering
Languages : en
Pages : 663
Book Description
This book includes original, peer-reviewed research papers from the 13th China Academic Conference on Printing and Packaging (CACPP 2022), held in Jinan, China, on November 10-12, 2022. The proceedings cover the recent findings in color science and technology, image processing technology, digital media technology, mechanical and electronic engineering and numerical control, materials and detection, digital process management technology in printing and packaging, and other technologies. As such, the book is of interest to university researchers, R&D engineers, and graduate students in the field of graphic arts, packaging, color science, image science, material science, computer science, digital media, network technology, and smart manufacturing technology.
Composite Electrolyte & Electrode Membranes for Electrochemical Energy Storage & Conversion Devices
Author: Giovanni Battista Appetecchi
Publisher: MDPI
ISBN: 3036507388
Category : Science
Languages : en
Pages : 164
Book Description
Electrochemical energy systems can successfully exploit beneficial characteristics of electrolyte and/or electrode membranes due to their intriguing peculiarities that make them well-established, standard components in devices such as fuel cells, electrolyzers, and flow batteries. Therefore, more and more researchers are attracted by these challenging yet important issues regarding the performance and behavior of the final device. This Special Issue of Membranes offers scientists and readers involved in these topics an appealing forum to bring and summarize the forthcoming Research & Development results, which stipulates that the composite electrolyte/electrode membranes should be tailored for lithium batteries and fuel cells. Various key aspects, such as synthesis/preparation of materials/components, investigation of the physicochemical and electrochemical properties, understanding of phenomena within the materials and electrolyte/electrode interface, and device manufacturing and performance, were presented and discussed using key research teams from internationally recognized experts in these fields.
Publisher: MDPI
ISBN: 3036507388
Category : Science
Languages : en
Pages : 164
Book Description
Electrochemical energy systems can successfully exploit beneficial characteristics of electrolyte and/or electrode membranes due to their intriguing peculiarities that make them well-established, standard components in devices such as fuel cells, electrolyzers, and flow batteries. Therefore, more and more researchers are attracted by these challenging yet important issues regarding the performance and behavior of the final device. This Special Issue of Membranes offers scientists and readers involved in these topics an appealing forum to bring and summarize the forthcoming Research & Development results, which stipulates that the composite electrolyte/electrode membranes should be tailored for lithium batteries and fuel cells. Various key aspects, such as synthesis/preparation of materials/components, investigation of the physicochemical and electrochemical properties, understanding of phenomena within the materials and electrolyte/electrode interface, and device manufacturing and performance, were presented and discussed using key research teams from internationally recognized experts in these fields.
Encyclopedia of Electrochemical Power Sources
Author:
Publisher: Elsevier
ISBN: 0323958222
Category : Technology & Engineering
Languages : en
Pages : 5674
Book Description
The Encyclopedia of Electrochemical Power Sources, Second Edition, is a comprehensive seven-volume set that serves as a vital interdisciplinary reference for those working with batteries, fuel cells, electrolyzers, supercapacitors, and photo-electrochemical cells. With an increased focus on the environmental and economic impacts of electrochemical power sources, this work not only consolidates extensive coverage of the field but also serves as a gateway to the latest literature for professionals and students alike. The field of electrochemical power sources has experienced significant growth and development since the first edition was published in 2009. This is reflected in the exponential growth of the battery market, the improvement of many conventional systems, and the introduction of new systems and technologies. This completely revised second edition captures these advancements, providing updates on all scientific, technical, and economic developments over the past decade. Thematically arranged, this edition delves into crucial areas such as batteries, fuel cells, electrolyzers, supercapacitors, and photo-electrochemical cells. It explores challenges and advancements in electrode and electrolyte materials, structural design, optimization, application of novel materials, and performance analysis. This comprehensive resource, with its focus on the future of electrochemical power sources, is an essential tool for navigating this rapidly evolving field. - Covers the main types of power sources, including their operating principles, systems, materials, and applications - Serves as a primary source of information for electrochemists, materials scientists, energy technologists, and engineers - Incorporates 365 articles, with timely coverage of environmental and sustainability aspects - Arranged thematically to facilitate easy navigation of topics and easy exploration of the field across its key branches - Follows a consistent structure and features elements such as key objective boxes, summaries, figures, references, and cross-references etc., to help students, faculty, and professionals alike
Publisher: Elsevier
ISBN: 0323958222
Category : Technology & Engineering
Languages : en
Pages : 5674
Book Description
The Encyclopedia of Electrochemical Power Sources, Second Edition, is a comprehensive seven-volume set that serves as a vital interdisciplinary reference for those working with batteries, fuel cells, electrolyzers, supercapacitors, and photo-electrochemical cells. With an increased focus on the environmental and economic impacts of electrochemical power sources, this work not only consolidates extensive coverage of the field but also serves as a gateway to the latest literature for professionals and students alike. The field of electrochemical power sources has experienced significant growth and development since the first edition was published in 2009. This is reflected in the exponential growth of the battery market, the improvement of many conventional systems, and the introduction of new systems and technologies. This completely revised second edition captures these advancements, providing updates on all scientific, technical, and economic developments over the past decade. Thematically arranged, this edition delves into crucial areas such as batteries, fuel cells, electrolyzers, supercapacitors, and photo-electrochemical cells. It explores challenges and advancements in electrode and electrolyte materials, structural design, optimization, application of novel materials, and performance analysis. This comprehensive resource, with its focus on the future of electrochemical power sources, is an essential tool for navigating this rapidly evolving field. - Covers the main types of power sources, including their operating principles, systems, materials, and applications - Serves as a primary source of information for electrochemists, materials scientists, energy technologists, and engineers - Incorporates 365 articles, with timely coverage of environmental and sustainability aspects - Arranged thematically to facilitate easy navigation of topics and easy exploration of the field across its key branches - Follows a consistent structure and features elements such as key objective boxes, summaries, figures, references, and cross-references etc., to help students, faculty, and professionals alike
Smart 3D Nanoprinting
Author: Ajit Behera
Publisher: CRC Press
ISBN: 1000637611
Category : Technology & Engineering
Languages : en
Pages : 285
Book Description
Examining smart 3D printing at the nanoscale, this book discusses various methods of fabrication, the presence of inherent defects and their annihilation, property analysis, and emerging applications across an array of industries. The book serves to bridge the gap between the concept of nanotechnology and the tailorable properties of smart 3D-print products. FEATURES Covers surface and interface analysis and smart technologies in 3D nanoprinting Details different materials, such as polymers, metals, semiconductors, glassceramics, and composites, as well as their selection criteria, fabrication, and defect analysis at nanoscale Describes optimization and modeling and the effect of machine parameters on 3D-printed products Discusses critical barriers and opportunities Explores emerging applications in manufacturing industries, such as aerospace, healthcare, automotive, energy, construction, and defense Smart 3D Nanoprinting: Fundamentals, Materials, and Applications is aimed at advanced students, researchers, and industry professionals in materials, manufacturing, chemical, and mechanical engineering. This book offers readers a comprehensive overview of the properties, opportunities, and applications of smart 3D nanoprinting.
Publisher: CRC Press
ISBN: 1000637611
Category : Technology & Engineering
Languages : en
Pages : 285
Book Description
Examining smart 3D printing at the nanoscale, this book discusses various methods of fabrication, the presence of inherent defects and their annihilation, property analysis, and emerging applications across an array of industries. The book serves to bridge the gap between the concept of nanotechnology and the tailorable properties of smart 3D-print products. FEATURES Covers surface and interface analysis and smart technologies in 3D nanoprinting Details different materials, such as polymers, metals, semiconductors, glassceramics, and composites, as well as their selection criteria, fabrication, and defect analysis at nanoscale Describes optimization and modeling and the effect of machine parameters on 3D-printed products Discusses critical barriers and opportunities Explores emerging applications in manufacturing industries, such as aerospace, healthcare, automotive, energy, construction, and defense Smart 3D Nanoprinting: Fundamentals, Materials, and Applications is aimed at advanced students, researchers, and industry professionals in materials, manufacturing, chemical, and mechanical engineering. This book offers readers a comprehensive overview of the properties, opportunities, and applications of smart 3D nanoprinting.
Emerging Nanotechnologies in Nanocellulose
Author: Liangbing Hu
Publisher: Springer Nature
ISBN: 3031140435
Category : Technology & Engineering
Languages : en
Pages : 425
Book Description
This book provides expert coverage of the current state of the art in the application of nanotechnologies to cellulose research. It offers a comprehensive collection of topics including nanocellulose isolation, assembly into hierarchical structures, and advanced emerging applications. During the past decades, research in nanocellulose has advanced quickly, driven by the urgent needs for sustainability and the availability of advanced nanotechniques. Although cellulose has been investigated and used for thousands of years, the recent advances in nanotechnology have transformed our view of this natural substance. Cellulose, when present in the highly crystalline nanoscale form, can demonstrate interesting mechanical, optical, and fluidic properties that can be manipulated in designing materials with novel applications. This book contains 12 chapters. Chapter 1 focuses primarily on the fundamentals of nanocellulose, including general aspects on its structure, isolation, and characterization. Chapters 2-4 summarize the recent progress on assembly of nanocellulose into the macroscopic scale using state-of-the-art techniques. Chapters 5-13 cover the most advanced applications of nanocellulose in emerging areas, including superstrong materials, light management, electronics, energy storage, printed battery, water treatment, nanogenerator, and biomedicine. The book will appeal to upper undergraduate and graduate students through practicing researchers as a comprehensive reference on the subject of nanocellulose and its use in various fields.
Publisher: Springer Nature
ISBN: 3031140435
Category : Technology & Engineering
Languages : en
Pages : 425
Book Description
This book provides expert coverage of the current state of the art in the application of nanotechnologies to cellulose research. It offers a comprehensive collection of topics including nanocellulose isolation, assembly into hierarchical structures, and advanced emerging applications. During the past decades, research in nanocellulose has advanced quickly, driven by the urgent needs for sustainability and the availability of advanced nanotechniques. Although cellulose has been investigated and used for thousands of years, the recent advances in nanotechnology have transformed our view of this natural substance. Cellulose, when present in the highly crystalline nanoscale form, can demonstrate interesting mechanical, optical, and fluidic properties that can be manipulated in designing materials with novel applications. This book contains 12 chapters. Chapter 1 focuses primarily on the fundamentals of nanocellulose, including general aspects on its structure, isolation, and characterization. Chapters 2-4 summarize the recent progress on assembly of nanocellulose into the macroscopic scale using state-of-the-art techniques. Chapters 5-13 cover the most advanced applications of nanocellulose in emerging areas, including superstrong materials, light management, electronics, energy storage, printed battery, water treatment, nanogenerator, and biomedicine. The book will appeal to upper undergraduate and graduate students through practicing researchers as a comprehensive reference on the subject of nanocellulose and its use in various fields.
Self-powered Sensors
Author: Rajesh Kumar Dhanaraj
Publisher: Elsevier
ISBN: 0443137935
Category : Science
Languages : en
Pages : 344
Book Description
Self-powered Sensors: A Path to Wearable Electronics features recent developments in chemical, photonic, pharmaceutical, microbiological, biomimetic, and bio-inspired approaches for MEMS/NEMS and medicinal self-powered sensors. Unconventional nanomaterial sensors driven by self-sufficient energy are given a contemporary review, with a focus on the categorization of energy sources and comparisons of research involving self-powered solar, piezoresistive, triboelectric, and thermodynamic technologies. This book also focuses on the different techniques, materials, comparisons of fabrication of self-powered sensors as well as thermoelectric self-powered sensors and its implantable applications. - Presents state-of-the-art technologies and advancements in the design and application of self-powered sensors - Examines the advantages and disadvantages of self-powered nanomaterial sensors in terms of energy collecting techniques and sensing applications - Reviews the incorporation of self-operating devices and novel uses for neuromorphic sensors
Publisher: Elsevier
ISBN: 0443137935
Category : Science
Languages : en
Pages : 344
Book Description
Self-powered Sensors: A Path to Wearable Electronics features recent developments in chemical, photonic, pharmaceutical, microbiological, biomimetic, and bio-inspired approaches for MEMS/NEMS and medicinal self-powered sensors. Unconventional nanomaterial sensors driven by self-sufficient energy are given a contemporary review, with a focus on the categorization of energy sources and comparisons of research involving self-powered solar, piezoresistive, triboelectric, and thermodynamic technologies. This book also focuses on the different techniques, materials, comparisons of fabrication of self-powered sensors as well as thermoelectric self-powered sensors and its implantable applications. - Presents state-of-the-art technologies and advancements in the design and application of self-powered sensors - Examines the advantages and disadvantages of self-powered nanomaterial sensors in terms of energy collecting techniques and sensing applications - Reviews the incorporation of self-operating devices and novel uses for neuromorphic sensors
Handbook of Industrial Inkjet Printing
Author: Werner Zapka
Publisher: John Wiley & Sons
ISBN: 3527687203
Category : Technology & Engineering
Languages : en
Pages : 946
Book Description
Unique in its integration of individual topics to achieve a full-system approach, this book addresses all the aspects essential for industrial inkjet printing. After an introduction listing the industrial printing techniques available, the text goes on to discuss individual topics, such as ink, printheads and substrates, followed by metrology techniques that are required for reliable systems. Three iteration cycles are then described, including the adaptation of the ink to the printhead, the optimization of the ink to the substrate and the integration of machine manufacturing, monitoring, and data handling, among others. Finally, the book summarizes a number of case studies and success stories from selected areas, including graphics, printed electronics, and 3D printing as well a list of ink suppliers, printhead manufacturers and integrators. Practical hints are included throughout for a direct hands-on experience. Invaluable for industrial users and academics, whether ink developers or mechanical engineers, and working in areas ranging from metrology to intellectual property.
Publisher: John Wiley & Sons
ISBN: 3527687203
Category : Technology & Engineering
Languages : en
Pages : 946
Book Description
Unique in its integration of individual topics to achieve a full-system approach, this book addresses all the aspects essential for industrial inkjet printing. After an introduction listing the industrial printing techniques available, the text goes on to discuss individual topics, such as ink, printheads and substrates, followed by metrology techniques that are required for reliable systems. Three iteration cycles are then described, including the adaptation of the ink to the printhead, the optimization of the ink to the substrate and the integration of machine manufacturing, monitoring, and data handling, among others. Finally, the book summarizes a number of case studies and success stories from selected areas, including graphics, printed electronics, and 3D printing as well a list of ink suppliers, printhead manufacturers and integrators. Practical hints are included throughout for a direct hands-on experience. Invaluable for industrial users and academics, whether ink developers or mechanical engineers, and working in areas ranging from metrology to intellectual property.