Real Analysis with Real Applications

Real Analysis with Real Applications PDF Author: Kenneth R. Davidson
Publisher:
ISBN:
Category : Mathematics
Languages : en
Pages : 652

Get Book Here

Book Description
Using a progressive but flexible format, this book contains a series of independent chapters that show how the principles and theory of real analysis can be applied in a variety of settings-in subjects ranging from Fourier series and polynomial approximation to discrete dynamical systems and nonlinear optimization. Users will be prepared for more intensive work in each topic through these applications and their accompanying exercises. Chapter topics under the abstract analysis heading include: the real numbers, series, the topology of R^n, functions, normed vector spaces, differentiation and integration, and limits of functions. Applications cover approximation by polynomials, discrete dynamical systems, differential equations, Fourier series and physics, Fourier series and approximation, wavelets, and convexity and optimization. For math enthusiasts with a prior knowledge of both calculus and linear algebra.

Real Analysis with Real Applications

Real Analysis with Real Applications PDF Author: Kenneth R. Davidson
Publisher:
ISBN:
Category : Mathematics
Languages : en
Pages : 652

Get Book Here

Book Description
Using a progressive but flexible format, this book contains a series of independent chapters that show how the principles and theory of real analysis can be applied in a variety of settings-in subjects ranging from Fourier series and polynomial approximation to discrete dynamical systems and nonlinear optimization. Users will be prepared for more intensive work in each topic through these applications and their accompanying exercises. Chapter topics under the abstract analysis heading include: the real numbers, series, the topology of R^n, functions, normed vector spaces, differentiation and integration, and limits of functions. Applications cover approximation by polynomials, discrete dynamical systems, differential equations, Fourier series and physics, Fourier series and approximation, wavelets, and convexity and optimization. For math enthusiasts with a prior knowledge of both calculus and linear algebra.

Analysis I

Analysis I PDF Author: Terence Tao
Publisher: Springer
ISBN: 9811017891
Category : Mathematics
Languages : en
Pages : 366

Get Book Here

Book Description
This is part one of a two-volume book on real analysis and is intended for senior undergraduate students of mathematics who have already been exposed to calculus. The emphasis is on rigour and foundations of analysis. Beginning with the construction of the number systems and set theory, the book discusses the basics of analysis (limits, series, continuity, differentiation, Riemann integration), through to power series, several variable calculus and Fourier analysis, and then finally the Lebesgue integral. These are almost entirely set in the concrete setting of the real line and Euclidean spaces, although there is some material on abstract metric and topological spaces. The book also has appendices on mathematical logic and the decimal system. The entire text (omitting some less central topics) can be taught in two quarters of 25–30 lectures each. The course material is deeply intertwined with the exercises, as it is intended that the student actively learn the material (and practice thinking and writing rigorously) by proving several of the key results in the theory.

Real Analysis and Applications

Real Analysis and Applications PDF Author: Kenneth R. Davidson
Publisher: Springer Science & Business Media
ISBN: 0387980989
Category : Mathematics
Languages : en
Pages : 523

Get Book Here

Book Description
This new approach to real analysis stresses the use of the subject with respect to applications, i.e., how the principles and theory of real analysis can be applied in a variety of settings in subjects ranging from Fourier series and polynomial approximation to discrete dynamical systems and nonlinear optimization. Users will be prepared for more intensive work in each topic through these applications and their accompanying exercises. This book is appropriate for math enthusiasts with a prior knowledge of both calculus and linear algebra.

Principles of Mathematical Analysis

Principles of Mathematical Analysis PDF Author: Walter Rudin
Publisher: McGraw-Hill Publishing Company
ISBN: 9780070856134
Category : Mathematics
Languages : en
Pages : 342

Get Book Here

Book Description
The third edition of this well known text continues to provide a solid foundation in mathematical analysis for undergraduate and first-year graduate students. The text begins with a discussion of the real number system as a complete ordered field. (Dedekind's construction is now treated in an appendix to Chapter I.) The topological background needed for the development of convergence, continuity, differentiation and integration is provided in Chapter 2. There is a new section on the gamma function, and many new and interesting exercises are included. This text is part of the Walter Rudin Student Series in Advanced Mathematics.

The Real Analysis Lifesaver

The Real Analysis Lifesaver PDF Author: Raffi Grinberg
Publisher: Princeton University Press
ISBN: 0691172935
Category : Mathematics
Languages : en
Pages : 200

Get Book Here

Book Description
The essential "lifesaver" that every student of real analysis needs Real analysis is difficult. For most students, in addition to learning new material about real numbers, topology, and sequences, they are also learning to read and write rigorous proofs for the first time. The Real Analysis Lifesaver is an innovative guide that helps students through their first real analysis course while giving them the solid foundation they need for further study in proof-based math. Rather than presenting polished proofs with no explanation of how they were devised, The Real Analysis Lifesaver takes a two-step approach, first showing students how to work backwards to solve the crux of the problem, then showing them how to write it up formally. It takes the time to provide plenty of examples as well as guided "fill in the blanks" exercises to solidify understanding. Newcomers to real analysis can feel like they are drowning in new symbols, concepts, and an entirely new way of thinking about math. Inspired by the popular Calculus Lifesaver, this book is refreshingly straightforward and full of clear explanations, pictures, and humor. It is the lifesaver that every drowning student needs. The essential “lifesaver” companion for any course in real analysis Clear, humorous, and easy-to-read style Teaches students not just what the proofs are, but how to do them—in more than 40 worked-out examples Every new definition is accompanied by examples and important clarifications Features more than 20 “fill in the blanks” exercises to help internalize proof techniques Tried and tested in the classroom

Real Analysis

Real Analysis PDF Author: N. L. Carothers
Publisher: Cambridge University Press
ISBN: 9780521497565
Category : Mathematics
Languages : en
Pages : 420

Get Book Here

Book Description
A text for a first graduate course in real analysis for students in pure and applied mathematics, statistics, education, engineering, and economics.

Real Mathematical Analysis

Real Mathematical Analysis PDF Author: Charles Chapman Pugh
Publisher: Springer Science & Business Media
ISBN: 0387216847
Category : Mathematics
Languages : en
Pages : 445

Get Book Here

Book Description
Was plane geometry your favourite math course in high school? Did you like proving theorems? Are you sick of memorising integrals? If so, real analysis could be your cup of tea. In contrast to calculus and elementary algebra, it involves neither formula manipulation nor applications to other fields of science. None. It is Pure Mathematics, and it is sure to appeal to the budding pure mathematician. In this new introduction to undergraduate real analysis the author takes a different approach from past studies of the subject, by stressing the importance of pictures in mathematics and hard problems. The exposition is informal and relaxed, with many helpful asides, examples and occasional comments from mathematicians like Dieudonne, Littlewood and Osserman. The author has taught the subject many times over the last 35 years at Berkeley and this book is based on the honours version of this course. The book contains an excellent selection of more than 500 exercises.

Mathematical Analysis

Mathematical Analysis PDF Author: Tom M. Apostol
Publisher:
ISBN: 9787111146896
Category : Mathematical analysis
Languages : en
Pages : 492

Get Book Here

Book Description


Introduction to Analysis

Introduction to Analysis PDF Author: Maxwell Rosenlicht
Publisher: Courier Corporation
ISBN: 0486134687
Category : Mathematics
Languages : en
Pages : 270

Get Book Here

Book Description
Written for junior and senior undergraduates, this remarkably clear and accessible treatment covers set theory, the real number system, metric spaces, continuous functions, Riemann integration, multiple integrals, and more. 1968 edition.

Mathematical Analysis I

Mathematical Analysis I PDF Author: Vladimir A. Zorich
Publisher: Springer Science & Business Media
ISBN: 9783540403869
Category : Mathematics
Languages : en
Pages : 610

Get Book Here

Book Description
This work by Zorich on Mathematical Analysis constitutes a thorough first course in real analysis, leading from the most elementary facts about real numbers to such advanced topics as differential forms on manifolds, asymptotic methods, Fourier, Laplace, and Legendre transforms, and elliptic functions.